首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate TOP mRNAs contain an oligopyrimidine tract at their 5' termini (5'TOP) and encode components of the translational machinery. Previously it has been shown that they are subject to selective translational repression upon growth arrest and that their translational behavior correlates with the activity of S6K1. We now show that the translation of TOP mRNAs is rapidly repressed by amino acid withdrawal and that this nutritional control depends strictly on the integrity of the 5'TOP motif. However, neither phosphorylation of ribosomal protein (rp) S6 nor activation of S6K1 per se is sufficient to relieve the translational repression of TOP mRNAs in amino acid-starved cells. Likewise, inhibition of S6K1 activity and rpS6 phosphorylation by overexpression of dominant-negative S6K1 mutants failed to suppress the translational activation of TOP mRNAs in amino acid-refed cells. Furthermore, TOP mRNAs were translationally regulated by amino acid sufficiency in embryonic stem cells lacking both alleles of the S6K1 gene. Inhibition of mTOR by rapamycin led to fast and complete repression of S6K1, as judged by rpS6 phosphorylation, but to only partial and delayed repression of translational activation of TOP mRNAs. In contrast, interference in the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway by chemical or genetic manipulations blocked rapidly and completely the translational activation of TOP mRNAs. It appears, therefore, that translational regulation of TOP mRNAs, at least by amino acids, (i) is fully dependent on PI3-kinase, (ii) is partially sensitive to rapamycin, and (iii) requires neither S6K1 activity nor rpS6 phosphorylation.  相似文献   

2.
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.  相似文献   

3.
Various mitogenic or growth inhibitory stimuli induce a rapid change in the association of terminal oligopyrimidine (TOP) mRNAs with polysomes. It is generally believed that such translational control hinges on the mammalian target of rapamycin (mTOR)-S6 kinase pathway. Amino acid availability affects the translation of TOP mRNAs, although the signaling pathway involved in this regulation is less well characterized. To investigate both serum- and amino acid-dependent control of TOP mRNA translation and the signaling pathways involved, HeLa cells were subjected to serum and/or amino acid deprivation and stimulation. Our results indicate the following. 1). Serum and amino acid deprivation had additive effects on TOP mRNA translation. 2). The serum content of the medium specifically affected TOP mRNA translation, whereas amino acid availability affected both TOP and non-TOP mRNAs. 3). Serum signaling to TOP mRNAs involved only a rapamycin-sensitive pathway, whereas amino acid signaling depended on both rapamycin-sensitive and rapamycin-insensitive but wortmannin-sensitive events. 4). Eukaryotic initiation factor-2alpha phosphorylation increased during amino acid deprivation, but not following serum deprivation. Interestingly, rapamycin treatment suggests a novel connection between the mTOR pathway and eukaryotic initiation factor-2alpha phosphorylation in mammalian cells, which may not, however, be involved in TOP mRNA translational regulation.  相似文献   

4.
Previous studies have shown that oral administration of leucine to fasted rats results in a preferential increase in liver in the translation of mRNAs containing an oligopyrimidine sequence at the 5'-end of the message (i.e. a TOP sequence). TOP mRNAs include those encoding the ribosomal proteins (rp) and translation elongation factors. In cells in culture, the preponderance of evidence suggests that translation of TOP mRNAs is regulated by the mammalian target of rapamycin (mTOR), a protein kinase that signals through ribosomal protein S6 kinase (S6K1) to rpS6. However, the results of previous studies were recently challenged by several reports suggesting that translation of TOP mRNAs is independent of mTOR, S6K1, and S6 phosphorylation. The purpose of the present study was to evaluate the role of mTOR in the stimulation of TOP mRNA translation by leucine in vivo. Fasted rats were treated with the mTOR inhibitor, rapamycin, prior to oral administration of leucine. It was found that rapamycin severely attenuated leucine-induced signaling through mTOR in liver. In addition, rapamycin prevented the enhanced translation of TOP mRNAs in rats administered leucine, as assessed by a decrease in the proportion of TOP mRNAs associated with polysomes (i.e. those mRNAs being actively translated). Instead, in rapamycin-treated rats, ribosomal protein mRNAs accumulated in the fraction containing monosomes (mRNA bound to one ribosome). The results suggest that in liver in vivo, mTOR-dependent signaling is critical for maximal stimulation of TOP mRNA translation.  相似文献   

5.
The stimulatory effect of insulin on protein synthesis is due to its ability to activate various translation factors. We now show that insulin can increase protein synthesis capacity also by translational activation of TOP mRNAs encoding various components of the translation machinery. This translational activation involves the tuberous sclerosis complex (TSC), as the knockout of TSC1 or TSC2 rescues TOP mRNAs from translational repression in mitotically arrested cells. Similar results were obtained upon overexpression of Rheb, an immediate TSC1-TSC2 target. The role of mTOR, a downstream effector of Rheb, in translational control of TOP mRNAs has been extensively studied, albeit with conflicting results. Even though rapamycin fully blocks mTOR complex 1 (mTORC1) kinase activity, the response of TOP mRNAs to this drug varies from complete resistance to high sensitivity. Here we show that mTOR knockdown blunts the translation efficiency of TOP mRNAs in insulin-treated cells, thus unequivocally establishing a role for mTOR in this mode of regulation. However, knockout of the raptor or rictor gene has only a slight effect on the translation efficiency of these mRNAs, implying that mTOR exerts its effect on TOP mRNAs through a novel pathway with a minor, if any, contribution of the canonical mTOR complexes mTORC1 and mTORC2. This conclusion is further supported by the observation that raptor knockout renders the translation of TOP mRNAs rapamycin hypersensitive.  相似文献   

6.
Translation of terminal oligopyrimidine tract (TOP) mRNAs, which encode multiple components of the protein synthesis machinery, is known to be controlled by mitogenic stimuli. We now show that the ability of cells to progress through the cell cycle is not a prerequisite for this mode of regulation. TOP mRNAs can be translationally activated when PC12 or embryonic stem (ES) cells are induced to grow (increase their size) by nerve growth factor and retinoic acid, respectively, while remaining mitotically arrested. However, both growth and mitogenic signals converge via the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway and are transduced to efficiently translate TOP mRNAs. Translational activation of TOP mRNAs can be abolished by LY294002, a PI3-kinase inhibitor, or by overexpression of PTEN as well as by dominant-negative mutants of PI3-kinase or its effectors, PDK1 and protein kinase Balpha (PKBalpha). Likewise, overexpression of constitutively active PI3-kinase or PKBalpha can relieve the translational repression of TOP mRNAs in quiescent cells. Both mitogenic and growth signals lead to phosphorylation of ribosomal protein S6 (rpS6), which precedes the translational activation of TOP mRNAs. Nevertheless, neither rpS6 phosphorylation nor its kinase, S6K1, is essential for the translational response of these mRNAs. Thus, TOP mRNAs can be translationally activated by growth or mitogenic stimuli of ES cells, whose rpS6 is constitutively unphosphorylated due to the disruption of both alleles of S6K1. Similarly, complete inhibition of mammalian target of rapamycin (mTOR) and its effector S6K by rapamycin in various cell lines has only a mild repressive effect on the translation of TOP mRNAs. It therefore appears that translation of TOP mRNAs is primarily regulated by growth and mitogenic cues through the PI3-kinase pathway, with a minor role, if any, for the mTOR pathway.  相似文献   

7.
The late phase of long-term potentiation (LTP) requires activation of the mammalian target of rapamycin (mTOR) pathway and synthesis of new proteins. mTOR regulates protein synthesis via phosphorylation of 4E-binding proteins (4E-BPs) and S6K, and via selective up-regulation of 5' terminal oligopyrimidine (5' TOP) mRNAs that encode components of the translational machinery. In this study, we explored the regulation of 5' TOP mRNAs during late-LTP (L-LTP). Synaptic plasticity was studied at Schaffer collateral – CA1 pyramidal cell synapses in rat organotypic hippocampal slices. Forskolin, an adenylate cyclase activator, induced L-LTP in organotypic slices that was mTOR-dependent. To determine if 5' TOP mRNAs are specifically up-regulated during L-LTP, we generated a 5' TOP-myr-dYFP reporter to selectively monitor 5' TOP translation. Confocal imaging experiments in cultured slices revealed an increase in somatic and dendritic fluorescence after forskolin treatment. This up-regulation was dependent on an intact TOP sequence and was mTOR, extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-dependent. Our findings indicate that forskolin induces L-LTP in hippocampal neurons and up-regulates 5' TOP mRNAs translation via mTOR, suggesting that up-regulation of the translational machinery is a candidate mechanism for the stabilization of LTP.  相似文献   

8.
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.  相似文献   

9.
Synthesis of new ribosomes is an energy costly and thus highly regulated process. Ribosomal protein synthesis is controlled by regulating translation of the corresponding ribosomal protein (rp)mRNAs. In mammalian cells a 5′-terminal oligopyrimidine tract (TOP) is a conserved feature of these mRNAs that has been demonstrated to be essential for their translational regulation. Translation of TOP mRNAs has been proposed to be regulated by phosphorylation of ribosomal protein S6, which is a common effect of mitogenic stimulation of cells. However, as demonstrated here, S6 phosphorylation is not detectable in murine erythroleukemia (MEL) or other hematopoietic cells. The absence of S6 phosphorylation appears to be due to the action of a phosphatase that acts downstream of S6 kinase, presumably on S6 itself. Despite the absence of changes in S6 phosphorylation, translation of TOP mRNAs is repressed during differentiation of MEL cells. These data demonstrate the existence of a mechanism for regulating S6 phosphorylation that is distinct from kinase activation, as well as the existence of mechanisms for regulating translation of TOP mRNAs that are independent of S6 phosphorylation.  相似文献   

10.
TOP mRNAs are translationally controlled by mitogenic, growth, and nutritional stimuli through a 5'-terminal oligopyrimidine tract. Here we show that LiCl can alleviate the translational repression of these mRNAs when progression through the cell cycle is blocked at G(0), G(1)/S, or G(2)/M phases in different cell lines and by various physiological and chemical means. This derepressive effect of LiCl does not involve resumption of cell division. Unlike its efficient derepressive effect in mitotically arrested cells, LiCl alleviates inefficiently the repression of TOP mRNAs in amino acid-deprived cells and has no effect in lymphoblastoids whose TOP mRNAs are constitutively repressed even when they are proliferating. LiCl is widely used as a relatively selective inhibitor of glycogen synthase kinase-3. However, inhibition per se of this enzyme by more specific drugs failed to derepress the translation of TOP mRNAs, implying that relief of the translational repression of TOP mRNAs by LiCl is carried out in a glycogen synthase kinase-3-independent manner. Moreover, this effect is apparent, at least in some cell lines, in the absence of S6-kinase 1 activation and ribosomal protein S6 phosphorylation, thus further supporting the notion that translational control of TOP mRNAs does not rely on either of these variables.  相似文献   

11.
12.
Y Biberman  O Meyuhas 《FEBS letters》1999,456(3):357-360
Vertebrate TOP mRNAs contain a 5' terminal oligopyrimidine tract (5' TOP), which is subject to selective translational repression in non-growing cells or in cell-free translation systems. In the present study, we monitored in vitro the effect of increasing amounts of a 16 nucleotides long oligoribonucleotide representing the 5' terminus of mouse ribosomal protein S16 mRNA on the translation of TOP and non-TOP mRNAs. Our results demonstrate that the wild-type sequence (but not its mutant counterparts) derepresses the translation of mRNAs containing 5' TOP motifs, but failed to stimulate the translation of non-TOP mRNAs, even if the latter differed only by a single nucleotide from their 5' TOP-containing counterparts. Similar results have been obtained with both wheat germ extract and rabbit reticulocyte lysate. It appears, therefore, that translational repression of TOP mRNAs is achieved in vitro by the accumulation of a titratable repressor rather than by the loss of an activator and that this repressor recognizes multiple TOP mRNAs with a diverse set of 5' TOP motifs.  相似文献   

13.
14.
The Type I IFN receptor-generated signals required for initiation of mRNA translation and, ultimately, induction of protein products that mediate IFN responses, remain unknown. We have previously shown that IFNalpha and IFNbeta induce phosphorylation of insulin receptor substrate proteins and downstream engagement of the phosphatidylinositol (PI) 3'-kinase pathway. In the present study we provide evidence for the existence of a Type I IFN-dependent signaling cascade activated downstream of PI 3'-kinase, involving p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated on threonine 421 and serine 424 and is activated during treatment of cells with IFNalpha or IFNbeta. Such activation of p70 S6K is blocked by pharmacological inhibitors of the PI 3'-kinase or the FKBP 12-rapamycin-associated protein/mammalian target of rapamycin (FRAP/mTOR). Consistent with this, the Type I IFN-dependent phosphorylation/activation of p70 S6K is defective in embryonic fibroblasts from mice with targeted disruption of the p85alpha and p85beta subunits of the PI 3'-kinase (p85alpha-/-beta-/-). Treatment of sensitive cell lines with IFNalpha or IFNbeta also results in phosphorylation/inactivation of the 4E-BP-1 repressor of mRNA translation. Such 4E-BP1 phosphorylation is also PI3'-kinase-dependent and rapamycin-sensitive, indicating that the Type I IFN-inducible activation of PI3'-kinase and FRAP/mTOR results in dissociation of 4E-BP1 from the eukaryotic initiation factor-4E (eIF4E) complex. Altogether, our data establish that the Type I IFN receptor-activated PI 3'-kinase pathway mediates activation of the p70 S6 kinase and inactivation of 4E-BP1, to regulate mRNA translation and induction of Type I IFN responses.  相似文献   

15.
TOP mRNAs (contain a 5' terminal oligopyrimidine tract) are differentially translated in rapamycin-treated human B lymphocytes. Following rapamycin treatment, ribosomal protein (rp) and translation elongation factor TOP mRNAs were translationally repressed, whereas hnRNP A1 TOP mRNA was not. Poly(A)-binding protein (Pabp1) TOP mRNA was translationally repressed under all conditions tested. To investigate the mechanism involved, chimeric mRNAs containing the hnRNP A1 5' untranslated region (UTR) linked to the human growth hormone (hGH) reporter were analyzed. Wild-type hnRNP A1 construct mRNA behaved similarly to endogenous hnRNP A1, whereas a single mutation (guanosine to cytidine) within the TOP element resulted in increased translational regulation. These results suggest that TOP mRNA translation can be modulated and that all TOP mRNAs are not translated with equal efficiency.  相似文献   

16.
17.
18.
19.
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.  相似文献   

20.
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号