首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一氧化氮改变肾性高血压大鼠主动脉功能   总被引:19,自引:1,他引:18  
Guo YM  Zhu XN  Pan JY 《生理学报》2000,52(3):243-246
探讨一氧化氮(NO)对二肾一夹(2K1C)肾性高血压大鼠主动脉功能的影响。实验分为5组:假手术、2K1C、卡托普利(captopril)、NAME(Nω-Nitro-L-arginine methyl ester)和精氨酸组。结果显示:在2K1C组,大鼠手术后4周的平均动脉压显著升高,主动脉对4Ch的舒张反应明显减弱,对苯肾上腺素收缩反应明显增强,主动脉壁环鸟苷酸(cGMP)含量显著减少。卡托谱利  相似文献   

2.
The present study was undertaken to investigate the effect of vitamin C treatment on blood pressure and vascular reactivity in salt-induced hypertension. Male Sprague-Dawley rats were fed a normal rat diet, a high-sodium (8% NaCl) diet, a normal rat diet plus vitamin C treament (100 mg x kg(-1) x day(-1)), or a high-sodium diet plus vitamin C treatment for 6 weeks. Salt loading significantly increased blood pressure, which was attenuated by vitamin C treatment. Aortic rings from the different groups were suspended for isometric-tension recording. The contractile response to noradrenaline was significantly increased in the salt-loaded rats. Vitamin C reduced the sensitivity of aortic rings to noradrenaline in rats on normal and high-sodium diets. In noradrenaline-precontracted rings, the relaxation response to acetylcholine, which was attenuated in the salt-loaded rats, was restored by vitamin C treatment. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) abolished the enhanced response to acetylcholine caused by vitamin C. The results suggest that the antihypertensive effect of vitamin C is associated with a reduction in vascular sensitivity to noradrenaline and enhancement of endothelium-dependent relaxation due to increased nitric oxide bioavailability.  相似文献   

3.
Homocysteine is an independent risk factor for coronary heart disease, as well as for cerebrovascular and peripheral vascular diseases. The purpose of this study was to investigate the effects of hyperhomocysteinemia (HHcy) on vascular reactivity within carotid artery segments isolated from ovariectomized female rats. Treatment with dl-Hcy thiolactone (1 g/kg body weight per day) reduced the phenylephrine-induced contraction of denuded rings. However, the treatment did not alter KCl-induced contractions, or relaxations induced by sodium nitroprusside or acetylcholine. We report elevated expressions of iNOS, eNOS, and nitrotyrosine in homocysteine-treated rat artery sections. Moreover, the inhibition of NOS by l-NAME, 1,400 W, or l-NNA restored phenylephrine-induced vasoconstriction in carotid artery segments from Hcy-treated rats. In conclusion, our findings show that severe HHCy can promote an acute decrease in the endothelium-independent contractile responses of carotid arteries to adrenergic agonists. This effect was restored by nitric oxide synthase inhibitors, which further supports the involvement of nitric oxide in HHcy-derived vascular dysfunction.  相似文献   

4.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

5.
Acrolein is a highly reactive aldehyde pollutant and an endogenous product of lipid peroxidation. Increased generation of, or exposures to, acrolein incites pulmonary and vascular injury. The effects of acrolein on the vasomotor responses of rat aortic rings were studied to understand its mechanism of action. Incubation with acrolein (10-100 microM) alone did not affect the resting tone of aortic vessels; however, a dose-dependent relaxation of phenylephrine-precontracted aortic rings was observed. Acrolein-induced relaxation was slow and time dependent and the extent of relaxation after 100 min of application was 44.7 +/- 4.1% (10 microM), 56.0 +/- 5.6% (20 microM), 61.0 +/- 7.9% (40 microM), and 96.1 +/- 2.1 (80 microM), respectively, versus 14.2 +/- 3.3% relaxation in the absence of acrolein. Acrolein-induced vasorelaxation was prevented by endothelial denudation and was abolished on pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester, the guanylyl cyclase inhibitor 1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one, or the cyclooxygenase inhibitor indomethacin. Inhibition of K+ channels (by tetrabutylammonium) or Na+-K+-ATPase (by ouabain) did not significantly prevent acrolein-mediated vasorelaxation. Exposure to acrolein in the presence or absence of other compounds elicited slow wave vasomotor effect in 77% of aortic vessels versus 1.4% in control. Vasomotor responses were also studied on aortic rings prepared from rats fed 2 mg. kg-1. day-1 acrolein for 3 alternate days by oral gavage. These vessels developed a significantly lower contractile response to phenylephrine compared with controls. Together, these results indicate that acute acrolein exposure evokes delayed vasorelaxation due to a nitric oxide- and prostacyclin-dependent mechanism, whereas in vivo acrolein exposure compromises vessel contractility.  相似文献   

6.
Increasing evidence suggests that statins may have pleiotropic effects on vascular wall independent of their cholesterol lowering properties. In the present study, we investigated the acute vascular effects of pravastatin, atorvastatin and cerivastatin on rat isolated aortic rings. Statins effectively and comparably relaxed the aortic rings precontracted submaximally with noradrenaline, in a concentration-dependent manner, in which a high potency was observed with cerivastatin. Endothelium removal or incubation of the aortic rings with nitric oxide synthase inhibitor L-NOARG (10(-4) M) and/or cyclooxygenase inhibitor indomethacin (10(-5) M) significantly attenuated the acute vasorelaxation induced by either of statin. Additionally, different from the other two statins, a significant reduction was observed in response to cerivastatin in the presence of KATP channel inhibitor, glibenclamide (10(-5) M) and Na+- K+ ATPase inhibitor, ouabain (10(-4) M). Furthermore, pretreatment of the rings with the cholesterol precursor mevalonate (10(-3) M) significantly inhibited the endothelium-mediated relaxant effects of the statins. Our findings suggest that statins could acutely modulate vascular tone importantly by endothelium-dependent and mevalonate-related pathways.  相似文献   

7.
Simulated microgravity depresses the ability of arteries to constrict to norepinephrine (NE). In the present study the role of nitric oxide-dependent mechanisms on the vascular hyporesponsiveness to NE was investigated in peripheral arteries of the rat after 20 days of hindlimb unweighting (HU). Blood vessels from control rats and rats subjected to HU (HU rats) were cut into 3-mm rings and mounted in tissue baths for the measurement of isometric contraction. Mechanical removal of the endothelium from carotid artery rings, but not from aorta or femoral artery rings, of HU rats restored the contractile response to NE toward control. A 10-fold increase in sensitivity to ACh was observed in phenylephrine-precontracted carotid artery rings from HU rats. In the presence of the nitric oxide synthase (NOS) substrate L-arginine, the inducible NOS inhibitor aminoguanidine (AG) restored the contractile responses to NE to control levels in the femoral, but not carotid, artery rings from HU rats. In vivo blood pressure measurements revealed that the peak blood pressure increase to NE was significantly greater in the control than in the HU rats, but that to AG was less than one-half in control compared with HU rats. These results indicate that the endothelial vasodilator mechanisms may be upregulated in the carotid artery, whereas the inducible NOS expression/activity may be increased in the femoral artery from HU rats. These HU-mediated changes could produce a sustained elevation of vascular nitric oxide levels that, in turn, could contribute to the vascular hyporesponsiveness to NE.  相似文献   

8.
Aortic rings excised from rats at 12 weeks of age showed a decrease in responsiveness during repeated contraction by increasing potassium concentration. By comparison, aortic rings obtained from rats at 22 and 26 weeks exhibited less loss or an increase in responsiveness to high potassium concentration during repeated contraction. The decrease in responsiveness to potassium in aortae of young rats was not due to the extended interval of incubation of these tissue in vitro. Aortic rings incubated without stimulation for 4 h following a reference contraction showed no change in contractile response to potassium. However, the magnitude of loss in responsiveness to potassium did appear to be related to the potassium concentration and the length of time the tissues were exposed to the high potassium solutions. Contraction of the tissue at 60 versus 30 mM KCl or extending the interval in depolarizing solution from 15 to 60 min significantly enhanced the decline in tissue responsiveness to potassium. The interruption of a series of potassium-induced contractions by exposure of the tissue to contractile (serotonin, norepinephrine) or relaxant (acetylcholine, isoproterenol) stimuli had no effect on the loss in responsiveness to potassium. However, injection of the calcium channel agonist, Bay K 8644, into the incubation media restored responsiveness to potassium. Concentration-response curves indicated that both sensitivity and the maximal response to potassium were reduced in aortic rings repeatedly contracted with potassium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Measurements of isometric tensions of rat aortic rings revealed the fact that when aortic rings with intact endothelium were precontracted (preconditioned) for 20 min by the alpha1-adrenergic agonist phenylephrine (10 microM), the tonic level of subsequent contraction by the same agonist was depressed and/or declined regardless of the presence or absence of endothelium during the second contraction. The removal of endothelium before preconditioning showed no such phenomenon. With the use of specific blockers, involvements of adenosine or of ATP-sensitive K+ (K(ATP)) channels during preconditioning or second contraction, respectively, were evaluated. Actions of nitric oxide synthase, cyclooxygenase, P(2) ATP purinoceptors, or K(ATP) channels during preconditioning appear not to be involved. Exogenous adenosine (up to 100 microM) without endothelium could mimic the preconditioning; however, contractile preconditioning by phenylephrine, mechanical stretching, or activation of protein kinase C needed to be done. The release of adenosine and adenine nucleotides from aortic rings was augmented by phenylephrine or by mechanical stretching of the rings with intact endothelium. Our results suggest that during vasocontraction, endothelium-derived adenosine acquires an ability to protect vascular tone against subsequent repeated contractions by mediating a delayed, possibly indirect, opening of K(ATP) channels.  相似文献   

10.
Inducible vascular nitric oxide synthase accounts for the contractile impairment observed in endotoxemia. We provide evidence that lipoteichoic acid (LTA) from Staphylococcus aureus, a micro-organism without endotoxin, also induces nitric oxide synthase. Our study demonstrates that on endothelium-free rings of rat aorta. LTA-like lipopolysaccharide induces a loss of contractility restored by Methylene blue and NG-nitro-L-arginine-methyl ester (LNAME). Moreover in cultured vascular smooth muscle cells, LTA produces a dose-dependent increase in intracellular cyclic GMP which is antagonized by LNAME and prevented by dexamethasone.  相似文献   

11.
12.
Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.  相似文献   

13.
Nonsteroidal anti-inflammatory drugs have been reported to exacerbate hypertension. In this study, we tested the hypothesis that a nitric oxide-releasing derivative of naproxen would ameliorate hypertension in the rat. Hypertension was induced by partially occluding one renal artery (the "2K,1C" model), and 2 wk later the rats started receiving naproxen, the nitric oxide-releasing derivative HCT-3012, or vehicle each day for 2 wk. Naproxen significantly exacerbated the hypertension. HCT-3012 significantly reduced blood pressure relative to both the naproxen- and vehicle-treated groups. Both naproxen and HCT-3012 markedly suppressed whole blood thromboxane B(2) synthesis. In studies of anesthetized rats, naproxen significantly enhanced the late hypertensive response to endothelin-1 and significantly blunted the early hypotensive response. In contrast, HCT-3102 did not affect either response to endothelin-1. In vitro, HCT-3012 significantly reduced the responsiveness of aortic rings to the contractile effects of phenylephrine. These studies suggest that HCT-3012 reduces blood pressure in hypertensive rats, not simply through the vasodilatory actions of the nitric oxide it releases, but through alterations in the responsiveness of the vasculature to endogenous pressor agents.  相似文献   

14.
Iloprost caused a concentration-dependent decrease in the response to noradrenaline in the rabbit isolated endothelium denuded rings from superior mesenteric artery but not thoracic aorta. Similar inhibition was obtained by verapamil using identical concentrations. In Ca(2+)-free EGTA containing medium noradrenaline both at lower and higher concentrations elicited a reduced contractile response and further addition of Ca2+ (2.5 mM) to the medium produced a second contraction in both mesenteric artery and aortic rings which was significantly and equally inhibited by iloprost and verapamil using identical concentrations in mesenteric artery but not in aortic rings. Prior addition of iloprost to the medium did not protect the inhibitory effect of phenoxybenzamine against noradrenaline-induced contraction. These results were taken as an evidence for the possible Ca2+ entry reducing effect of iloprost in mesenteric artery but not thoracic aorta. These results were also taken as an indirect evidence supporting the hypothesis that increased synthesis of prostacyclin by noradrenaline in the vascular wall may inhibit the contractile effect of the agonist by a (-) feedback mechanism mediated by Ca2+ entry into the vascular smooth muscle.  相似文献   

15.
Accumulating evidence suggests that hyperbaric oxygen (HBO) stimulates neuronal nitric oxide (NO) synthase (NOS) activity, but the influence on endothelial NOS (eNOS) activity and vascular NO bioavailability remains unclear. We used a bioassay employing rat aortic rings to evaluate vascular NO bioavailability. HBO exposure to 2.8 atm absolute (ATA) in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the reduction in endothelium-derived NO bioavailability was independent of superoxide production. In vitro HBO induced contraction of resting aortic rings with and without endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-l-arginine. In addition, in vitro HBO attenuated the vascular contraction produced by norepinephrine, and this effect was reversed by N(omega)-nitro-l-arginine, but not by endothelial denudation. These findings indicate stimulation of extraendothelial NO production during HBO exposure. A radiochemical assay was used to assess NOS activity in rat aortic endothelial cells. Catalytic activity of eNOS in cell homogenates was not decreased by HBO, and in vivo HBO exposure to 2.8 ATA was without effect on eNOS activity and/or vascular NO bioavailability in vitro. We conclude that HBO reduces endothelium-derived NO bioavailability independent of superoxide production, and this effect seems to be unrelated to a decrease in eNOS catalytic activity. In addition, HBO increases the resting tone of rat aortic rings and attenuates the contractile response to norepinephrine by endothelium-independent mechanisms that involve extraendothelial NO production.  相似文献   

16.
Melatonin (MEL), the principal hormone of the vertebral pineal gland, elicits several neurobiological effects. However, the effects of MEL on vascular tissues are still vague. The first goal of this study was to investigate the effect of MEL on isolated rabbit aortic rings and its role in the vascular reactivity to contractile agents, noradrenaline (NA) and phenylephrine (PHE) and relaxant agents (acetylcholine and sodium nitroprusside). In addition, the levels of nitric oxide (NO), cGMP, total calcium, lipid peroxides, superoxide dismutase (SOD) and glutathione (GSH) were also investigated in tissue homogenates of rabbit aortic rings preincubated (20 min) in MEL with and without contractile agents. Our results revealed that MEL has an endothelium-dependent vaso-relaxant effect and potentiated significantly the vaso-relaxant effect of acetylcholine. Moreover, MEL (10?4 M) had a significant inhibitory effect on the contractile responses of aortic rings to both NA and PHE. In comparison with control tissue rings, the levels of lipid peroxides were significantly increased while the levels of GSH, and SOD activities were significantly decreased in tissue homogenates of aortic rings pre-incubated (20 min) in NA or PHE. In addition, the levels of NO and cGMP were significantly lower in tissue rings pre-treated with NA and PHE, respectively. Also, the levels of total calcium were significantly increased only in tissue rings pre-treated with NA. The levels of lipid peroxides were significantly decreased, while the levels of GSH, NO and cGMP and SOD activities were significantly increased in tissue homogenates of aortic rings incubated (20 min) in MEL (10?4 M) in comparison to ring tissues incubated in NA or PHE alone. In aortic rings incubated in MEL+PHE, the levels of lipid peroxides were significantly lower while the levels of GSH and cGMP and SOD activities were significantly higher than their levels in ring tissues incubated in PHE. In aortic rings incubated in MEL+NA, the levels of lipid peroxides and total calcium were significantly lower while the levels of NO were significantly higher than their levels in ring tissues incubated in NA alone. We conclude that MEL has an endothelium dependent vasorelaxant effect and potentiates the endothelium dependent vasorelaxation induced by acetylcholine. MEL inhibits the contractile responses of aortic rings to NA and PHE. These effects may be, in part, due to re-balancing the pro-oxidant/antioxidants system, lowered calcium content and elevated NO and cGMP levels in vascular tissue.  相似文献   

17.
Chronic lead exposure induces hypertension and alters endothelial function. However, treatment with low lead concentrations was not yet explored. We analyzed the effects of 7 day exposure to low lead concentrations on endothelium-dependent responses. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent dose 0.05 μg/100 g, i.m. to cover daily loss) or vehicle; blood levels attained at the end of treatment were 9.98 μg/dL. Lead treatment had the following effects: increase in systolic blood pressure (SBP); reduction of contractile response to phenylephrine (1 nM-100 μM) of aortic rings; unaffected relaxation induced by acetylcholine (0.1 nM-300 μM) or sodium nitroprusside (0.01 nM-0.3 μM). Endothelium removal, N(G)-nitro-L-arginine methyl ester (100 μM) and tetraethylammonium (2 mM) increased the response to phenylephrine in treated rats more than in untreated rats. Aminoguanidine (50 μM) increased but losartan (10 μM) and enalapril (10 μM) reduced the response to phenylephrine in treated rats. Lead treatment also increased aortic Na(+)/K(+)-ATPase functional activity, plasma angiotensin-converting enzyme (ACE) activity, protein expression of the Na(+)/K(+)-ATPase alpha-1 subunit, phosphorylated endothelial nitric oxide synthase (p-eNOS), and inducible nitric oxide synthase (iNOS). Our results suggest that on initial stages of lead exposure, increased SBP is caused by the increase in plasma ACE activity. This effect is accompanied by increased p-eNOS, iNOS protein expression and Na(+)/K(+)-ATPase functional activity. These factors might be a compensatory mechanism to the increase in SBP.  相似文献   

18.
Incubation with endotoxin activates the L-arginine pathway in vascular tissue   总被引:20,自引:0,他引:20  
Rat aortic rings incubated with a low dose of endotoxin (100 ng ml-1) for 5 h exhibited depressed reactivity to norepinephrine (NE) which was independent of the presence of endothelium. An inhibitor of nitric oxide synthesis from L-arginine NGmonomethyl-L-arginine (300 microM), but not the inactive D-enantiomer, restored the contractile response of endotoxin-treated rings to control. The effect of NGmonomethyl-L-arginine was reversed by L-arginine (1 mM). In the absence of NGmonomethyl-L-arginine, L- but not D-arginine relaxed endotoxin-treated rings but was without effect on control tissues. This response was reversed following inhibition of guanylate cyclase by methylene blue (3 microM). In addition, tissue cyclic GMP content was 10 times greater in endotoxin-treated compared to control tissue. These data indicate that endotoxin can act directly on vascular tissue to induce a hyporeactivity to NE which is secondary to the activation of the L-arginine pathway and subsequent activation of soluble guanylate cyclase.  相似文献   

19.
Praeruptorin A is a coumarin compound naturally occurring in the roots of Peucedanum praeruptorum Dunn., a commonly used traditional Chinese medicine for the treatment of certain respiratory diseases and hypertension. Although previous studies indicated the relaxant effects of (±)-praeruptorin A on tracheal and arterial preparations, little is known about the functional characteristics of the enantiomers. In the present study, the two enantiomers were successfully isolated and identified by using a preparative Daicel Chiralpak AD-H column, and their relaxant effects on aorta rings were observed and compared. (+)-Praeruptorin A showed more potent relaxation than (?)-praeruptorin A against KCl- and phenylephrine-induced contraction of rat isolated aortic rings with intact endothelium. Removal of the endothelium remarkably reduced the relaxant effect of (+)-praeruptorin A but not that of (?)-praeruptorin A. Pretreatment of aortic rings with Nω-nitro-l-arginine methyl ester (l-NAME, an inhibitor of nitric oxide synthase) or methylene blue (MB, a soluble guanylyl cyclase inhibitor) resulted in similar changes of the relaxant effects of the two enantiomers to endothelium removal. Molecular docking studies also demonstrated that (+)-praeruptorin A was in more agreement to nitric oxide synthase pharmacophores than (?)-praeruptorin A. On the other hand, the two enantiomers of praeruptorin A could slightly attenuate the contraction of rat aortic rings induced by internal Ca2+ release from sarcoplasmic reticulum (SR). These findings indicated that (+)-praeruptorin A and (?)-praeruptorin A exerted distinct relaxant effects on isolated rat aorta rings, which might be mainly attributed to nitric oxide synthesis catalyzed by endothelial nitric oxide synthase.  相似文献   

20.
Meng AH  Ling YL  Wang DH  Gu ZY  Li SJ  Zhu TN 《生理学报》2001,53(6):478-482
为探讨八肽胆囊收缩素(CCK-8)缓解内毒素休克时肺动脉高压的作用机制,应用离体血管环张力测定技术及一氧化氮合酶(NOS)检测方法,观察了一氧化氮(NO)在CCK-8减轻肿瘤坏死因子-α(tumor necrosis factor-al-pha,TNF-α)的抑制肺动脉内皮依赖性舒张反应中的作用。结果显示:TNF-α(4000U/ml)孵育2h时,肺动脉对10^-6mol/L苯肾上腺素(phenylephrine,PE)和10^-6mol/L乙酰胆碱(ACh)的收缩反应及内皮依赖性舒张反应均无明显变化。TNF-α孵育7或14h时,肺动脉对10^-6mol/L ACh介导的内皮依赖性舒张反应降低,CCK-8(0.5μg/ml)可逆转TNF-α的上述作用,CCK-8本身对正常肺动脉反应性无明显影响。TNF-α、CCK-8对PE引起的收缩反应无显著影响。L-精氨酸(L-Arg)可使TNF-α7h内皮依赖性舒张作用恢复。氨基胍(AG)不影响各组肺动脉对10^-6mol/L ACh的内皮依赖性舒张反应,而使TNF-α组肺动脉环对10^-6mol/L PE的收缩反应显著增加。L-硝基精氨酸(L-NNA)使各组肺动脉环对10^-6mol/L ACh反应由舒张变为收缩,对10^-6mol/L PE的收缩反应显著增强。检测7h各组NOS活性,TNF-α组、TNF-α+CCK-8组均较对照组显著增加,CCK-8组与对照组比较无显著差异。上述结果提示,CCK-8可逆转TNF-α对内皮依赖性舒张反应的抑制作用,此作用可能与NO有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号