首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The role of sphingomyelin synthase 1 (SMS1), the Golgi membrane isoform of the enzyme, in ceramide metabolism and apoptosis after photodamage with the photosensitizer Pc 4 (PDT) is unclear. In the present study, using electrospray ionization/double mass spectrometry, we show that in Jurkat cells overexpressing SMS1, increases in ceramides were lower than in empty-vector transfectants post-PDT. Similarly, the responses of dihydroceramides and dihydrosphingosine, precursors of ceramide in the de novo synthetic pathway, were attenuated in SMS1-overexpressor after photodamage, suggesting the involvement of the de novo pathway. Overexpression of SMS1 was associated with differential regulation of sphingomyelin levels, as well as with the reduced inhibition of the enzyme post-treatment. Concomitant with the suppressed ceramide response, PDT-induced DEVDase activation was substantially reduced in SMS1-overexpressors. The data show that overexpression of SMS1 is associated with suppressed ceramide response and apoptotic resistance after photodamage.  相似文献   

2.
The oxidative stress induced by photodynamic therapy using the phthalocyanine Pc 4 (PDT) can lead to apoptosis, and is accompanied by photodamage to Bcl-2 and accumulation of de novo ceramide. Similar to PDT, the oxidative stress inducer and Bcl-2 inhibitor HA14-1 triggers apoptosis. To test the specificity of the ceramide response, Jurkat cells were exposed to an equitoxic dose of HA14-1. Unlike PDT, HA14-1 did not induce accumulation of de novo ceramide, although levels of sphingomyelin, phosphatidylserine and phosphatidylethanolamine were below control values after either treatment. In contrast to PDT, (i) the transient inhibition of serine palmitoyltransferase induced by HA14-1 was associated with the initial decrease in de novo ceramide, and (ii) HA14-1-initiated inhibition of sphingomyelin synthase and glucosylceramide synthase did not result in accumulation of de novo ceramide. These results show that the ceramide response to PDT is not induced by another pro-apoptotic stimulus, and may be unique to PDT as described here.  相似文献   

3.
Water-soluble complexes of the dietary carotenoid psi,psi-carotene (lycopene 1) with cyclomaltohexaose (alpha-cyclodextrin, alphaCD) and cyclomaltoheptaose (beta-cyclodextrin, betaCD) have been prepared and characterized via multiangle light scattering (MALS), ionspray/electrospray ionization (IS/ESI) mass spectrometry (MS) and tandem MS. MALS experiments point out that large aggregates of particles, on the nanometer-size scale, are present in water, with meaningful differences in the shape of the alphaCD/1 aggregates with respect to betaCD/1 analogues. The true 1:1 alphaCD/1 inclusion complex has been observed by IS/ESIMS and confirmed by tandem MS. The structure of CD/1 aggregations in water is proposed which are consistent with the combined MALS and MS experimental results.  相似文献   

4.
Sensitive determination of histamine (HA) in hair was carried out by column-switching reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS). HA was labeled with excess amounts of 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in a mixture of 0.1 M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting DBD-HA derivative was roughly separated by a Mightysil RP-18 GP (100 x 2mm i.d., 3 microm) with an acidic mobile phase containing 0.1% trifluoroacetic acid. DBD-HA in the fraction flowing due to a position change in the six-port column-switching valve was then completely separated by a Wakopak Navi C30 (150 x 2mm i.d., 5 microm) with 20 mM AcONH(4)-CH(3)CN (8:2). The mass spectrometer was operated in the selected reaction monitoring (SRM) mode for the product ion (m/z 292) obtained from MS-MS measurement using the protonated molecular ion [M+H](+) (m/z 337) as the precursor ion. Good linearity was achieved from the calibration curve obtained by plotting peak area ratios of the internal standard (HA-d(4)) against the injected amounts of HA (1.66-16.6 pmol, r(2)=0.999). The coefficients of variation, at 1.66- and 16.6-pmol injections, were 5.6 and 3.7%, respectively (n=6). Furthermore, the detection limit was 0.167 pmol. The efficiency of the recommended procedure was identified from the determination in the rat hair root after intraperitoneal administration of HA. The proposed method was applied to HA determination in the hair shaft of Dark Agouti rats and healthy volunteers. The variations in the concentrations in 1mg of hair shaft were 0.80-1.84 pmol (mean+/-SD=1.33+/-0.33, n=12) in rats and 0.94-72.3 pmol (17.2+/-21.5, n=16) in humans. The determination of HA in the plasma of rats and humans was also performed successfully by this method. Because the proposed method provides good precision and trace detection of HA in hair, the analytical technique seems to be applicable for the determination of various biogenic amines in hair.  相似文献   

5.
6.
The chloroplast H+-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO2 concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H+-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.  相似文献   

7.
This study reports the initial separation of phospholipase C-alpha from porcine retina using non-denaturing two-dimensional gel electrophoresis (2-DE). Detection was by negative staining and then its hydrolytic activity was estimated using alpha-naphthyl acetate in a 2-DE gel. A spot of phospholipase C-alpha separated by 2-DE was excised. It was then electrophoretically transferred to an anion-exchange solid phase column after 40 mg, equal to dry weight of the solid resin from the cartridge (Accell Plus QMA, Waters Corporation), was packed into a disposable 1 ml syringe to make an anion-exchange solid phase column. Phosphatidylcholine was hydrolyzed in the anion-exchange solid phase column containing phospholipase C-alpha. The results indicated that a column with hydrolytic activity could be produced once lipases separated by non-denaturing 2-DE were transferred to the solid phase column.  相似文献   

8.
The nonsteroidal synthetic estrogen hexestrol (HES), which is diethylstilbestrol hydrogenated at the C-3-C-4 double bond, is carcinogenic. Its major metabolite is the catechol, 3'-OH-HES, which can be metabolically converted to the catechol quinone, HES-3',4'-Q. Study of HES was undertaken with the scope to substantiate evidence that natural catechol estrogen-3,4-quinones are endogenous carcinogenic metabolites. HES-3',4'-Q was previously shown to react with deoxyguanosine to form the depurinating adduct 3'-OH-HES-6'-N7Gua by 1,4-Michael addition [Jan S-T, Devanesan PD, Stack DE, Ramanathan R, Byun J, Gross ML, et al. Metabolic activation and formation of DNAadducts of hexestrol,a synthetic nonsteroidal carcinogenic estrogen. Chem Res Toxicol 1998;11:412-9.]. We report here formation of the depurinating adduct 3'-OH-HES-6'-N3Ade by reaction of HES-3',4'-Q with Ade by 1,4-Michael addition. The structure of the N3Ade adduct was established by NMR and MS. We also report here formation of the depurinating 3'-OH-HES-6'-N7Gua and 3'-OH-HES-6'-N3Ade adducts by reaction of HES-3',4'-Q with DNA or by activation of 3'-OH-HES by tyrosinase, lactoperoxidase, prostaglandin H synthase or 3-methylcholanthrene-induced rat liver microsomes in the presence of DNA. The N3Ade adduct was released instantaneously from DNA, whereas the N7Gua adduct was released with a half-life of approximately 3 h. Much lower (<1%) levels of unidentified stable adducts were detected in the DNA from these reactions. These results are similar to those obtained by reaction of endogenous catechol estrogen-3,4-quinones with DNA. The similarities extend to the instantaneously-depurinating N3Ade adducts and relatively slowly-depurinating N7Gua adducts. The endogenous estrogens, estrone and estradiol, their 4-catechol estrogens and HES are carcinogenic in the kidney of Syrian golden hamsters. These results suggest that estrone (estradiol)-3,4-quinones and HES-3',4'-Q are the ultimate carcinogenic metabolites of the natural and synthetic estrogens, respectively. Reaction of the electrophilic quinones by 1,4-Michael addition with DNA at the nucleophilic N-3 of Ade and N-7 of Gua is suggested to be the major critical step in tumor initiation by these compounds.  相似文献   

9.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

10.
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous double-conjugates of 3beta-hydroxy-7-oxo-5-cholen-24-oic acid were also prepared. The principal reactions involved were: (1) beta-d-N-acetylglucosaminidation at C-7 of methyl 3beta-tert-butyldimethylsilyloxy (TBDMSi)-7beta-hydroxy-5-cholen-24-oate with 2-acetamido-1alpha-chloro-1,2-dideoxy-3,4,6-tri-O-acetyl-d-glucopyranose in the presence of CdCO(3) in boiling toluene; (2) sulfation at C-3 of the resulting 3beta-TBDMSi-7beta-GlcNAc with sulfur trioxide-trimethylamine complex in pyridine; and (3) direct amidation at C-24 of the 3beta-sulfooxy-7beta-GlcNAc conjugate with glycine methyl ester hydrochloride (or taurine) using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as a coupling agent in DMF. The structures of the multi-conjugated bile acids were characterized by liquid chromatography-mass spectrometry with an electrospray ionization probe under the positive and negative ionization modes.  相似文献   

11.
12.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号