首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sulfate-reducing bacterium, Desulfomonile tiedjei DCB-1, conserves energy for growth from reductive dechlorination of 3-chlorobenzoate via halorespiration. To understand this respiratory process better, we examined electron carriers from different cellular compartments of D. tiedjei. A 50-kDa cytochrome from the membrane fraction was found to be co-induced with dechlorination activity. This inducible cytochrome was extracted from the membrane fractions by Tris-HCl buffer containing ammonium sulfate at 35% saturation and was purified to electrophoretic homogeneity by phenyl superose, Mono Q, and hydroxyapatite chromatography. The purified cytochrome had a high-spin absorption spectrum. In a pH titration experiment, the absorption spectrum of the inducible cytochrome shifted to low spin at pH 13.2. The midpoint potential of the inducible cytochrome at pH 7.0 was –342 mV. The NH2-terminal amino acid sequence of the inducible cytochrome was determined and was used to obtain inverse PCR products containing the sequence of the gene encoding the inducible cytochrome. The ORF was 1398 bp and coded for a protein of 52.6 kDa. Two c-type heme-binding domains were identified in the COOH-terminal half of the protein. A putative signal peptide of 26 residues was found at the NH2-terminal end. The protein sequence was not found to have substantial sequence similarity to any other sequence in GenBank. We conclude that this is a c-type cytochrome substantially different from previously characterized c-type cytochromes. Received: 30 May 1997 / Accepted: 29 July 1997  相似文献   

2.
A feasibility evaluation identified chemical reduction and biostimulation as a potential remedy for a plume containing hexavalent chromium (Cr(VI)) and tetrachloroethene (PCE) at an industrial site in southern California. The objectives of this laboratory study were to determine the stoichiometry of calcium polysulfide (CaSx) reaction with Cr(VI) in the presence of sediment, the effect of CaSx on the potential for in situ biological reductive dechlorination of PCE, and the potential to reduce Cr(VI) and PCE by addition of only an electron donor. Approximately 1 L of CaSx solution (containing 50 g S2-/L) was required per 1000 L of groundwater containing 45 mg/L of Cr(VI) (i.e., 1.8 mol S2- per mol Cr(VI)). The sediment also exerted a sulfide demand (≥0.38 g S2 - per kg sediment), but at a slower rate than the Cr(VI). In microcosms prepared with lactate, corn syrup, soybean oil, or methanol, but no CaSx, the Cr(VI) was biologically reduced in the treatments with lactate and corn syrup, but much more slowly than with CaSx. Even after 20 months of incubation, no significant reductive dechlorination of PCE occurred in any of the microcosms, including those in which the Cr(VI) was removed with CaSx. Bioaugmentation was tested with the microcosms that received lactate and corn syrup (following 20 months of incubation), using an enrichment culture that actively dechlorinates trichloroethene. PCE dechlorination began within 1 month in the lactate-only treatment; in the corn syrup-amended treatment, PCE dechlorination occurred in only one of the three bottles. However, no PCE dechlorination occurred following bioaugmentation of the lactate and corn syrup microcosms that were initially treated with CaSx, indicating that CaSx (and/or its reaction products) exerted a negative impact on the chlororespiring microbes. This outcome highlights the need to evaluate sites on a case-by-case basis when in situ chemical treatment is applied prior to microbial reductive dechlorination.  相似文献   

3.
The mass emissions rate of contaminants from nonaqueous-phase liquids (NAPLs) is a driving factor in remediation efforts, whether those efforts are designed to remove, transform, or stabilize the entrapped NAPL or down-gradient aqueous concentrations. Enhancement of mass flux from NAPL source zones has been previously reported in the presence of microbial reductive dechlorination activity in systems containing NAPL with a low proportion of tetrachloroethene (PCE) or a low residual saturation (e.g., 2%). The results reported here demonstrate reductive dechlorination of PCE at residual saturations of 35%, obtained under two different column flow velocities and NAPL configurations. Mass flux in biotic columns was approximately 45% greater than that in uninoculated columns, due to both the presence of daughter products and higher concentrations of PCE in the effluent from biotic columns. Daughter product concentrations were greater in columns with NAPL emplaced only in the lower quarter compared to those with NAPL throughout, and in columns run at the slower velocity. The elevated PCE concentrations in biotic column effluents suggest the influence of microbially generated surfactants, which was supported by surface tension measurements. These results demonstrate the potential significance of bioactivity within NAPL source zones on NAPL longevity and down-gradient aqueous concentrations.  相似文献   

4.
Carbon stable isotope fractionation of tetrachloroethene (PCE) and trichloroethene (TCE) was investigated during reductive dechlorination. Growing cells of Sulfurospirillum multivorans, Sulfurospirillum halorespirans, or Desulfitobacterium sp. strain PCE-S, the respective crude extracts and the abiotic reaction with cyanocobalamin (vitamin B(12)) were used. Fractionation of TCE (alphaC=1.0132-1.0187) by S. multivorans was more than one order of magnitude higher than values previously observed for tetrachloroethene (PCE) (alphaC=1.00042-1.0017). Similar differences in fractionation were observed during reductive dehalogenation by the close relative S. halorespirans with alphaC=1.0046-1.032 and alphaC=1.0187-1.0229 for PCE and TCE respectively. TCE carbon isotope fractionation (alphaC=1.0150) by the purified PCE-reductive dehalogenase from S. multivorans was more than one order of magnitude higher than fractionation of PCE (alphaC=1.0017). Carbon isotope fractionation of TCE by Desulfitobacterium sp. strain PCE-S (alphaC=1.0109-1.0122) as well as during the abiotic reaction with cyanocobalamin (alphaC=1.0154) was in a similar range to previously reported values for fractionation by mixed microbial cultures. In contrast with previous results with PCE, no effects due to rate limitations, uptake or transport of the substrate to the reactive site could be observed during TCE dechlorination. Our results show that prior to a mechanistic interpretation of stable isotope fractionation factors it has to be carefully verified how other factors such as uptake or transport affect the isotope fractionation during degradation experiments with microbial cultures.  相似文献   

5.
Pseudomonas putida 10.2, a 3-chlorobenzoate (3CBa)-degrading bacterium, was isolated from a soil sample obtained from an agricultural area in Chiang Mai, Thailand. This bacterium could degrade 2mm 3CBa very rapidly with the concomitant formation of chloride ion when grown in mineral salt-yeast extract medium. The presence of glucose, lactose and pyruvate in the medium reduced the capability of this bacterium to degrade 3CBa. Metabolites such as 3-chlorocatechol (3CC), catechol and cis,cis-muconic acid (muconate) could be detected in the growth medium or in cell suspensions when 3CBa was used as the substrate. Furthermore, when crude enzyme extract prepared from 3CBa-grown P. putida 10.2 was incubated with 3CC, catechol and muconate could be detected in the reaction mixtures. Thus, the biodegradation pathway of 3CBa by P. putida 10.2 was proposed to involve transformation of 3CBa to 3CC. The dehalogenation step is believed to involve removal of chloride from 3CC to form catechol, which is subsequently converted to muconate.  相似文献   

6.
An anaerobic consortium taken from brackish sediments, enriched byPCE/CH3OH sequential feeding, was capable of completely dechlorinating tetrachloroethene(PCE) to ethene (ETH). In batch experiments, PCE (0.5 mM) was dechlorinated to ethene (ETH) in approximately 75 h with either CH3OH or H2 as the electron donor. When VC (0.5 mM) was added instead of PCE it was dechlorinated without any initial lag by the PCE/CH3OHenriched consortium, although at a lower dechlorination rate. In batch tests H2 could readilyreplace CH3OH for supporting PCE dechlorination, with a similar PCE dechlorination rate andproduct distribution with respect to those observed with methanol. This indicates that H2 productionduring CH3OH fermentation was not the rate-limiting step of PCE or VC dechlorination.Acetogenesis was the predominant activity when methanol was present. A remarkable homoacetogenicactivity was also observed when hydrogen was supplied instead of methanol.  相似文献   

7.
An anaerobic enrichment culture with glucose as the sole source of carbon and energy plus trichloroethene (TCE) as a potential electron acceptor was inoculated with material from a full size anaerobic charcoal reactor that biologically eliminated dichloromethane from contaminated groundwater (Stromeyer et al. 1991). In subcultures of this enrichment complete sequential transformation of 10 µM TCE viacis-dichloroethene and chloroethene to ethene was reproducibly observed. Maintenance of this activity on subcultivation required the presence of TCE in the medium. The enrichment culture was used to inoculate an anaerobic fixed-bed reactor containing sintered glass Raschig elements as support material. The reactor had a total volume of 1780 ml and was operated at 20 °C in an up-flow mode with a flow rate of 50 ml/h. It was fed continuously with 2 mM glucose and 55 µM TCE. Glucose was converted to acetate as the major product and to a minor amount of methane; TCE was quantitatively dehalogenated to ethene. When, in addition to TCE, tetrachloroethene or 1,2-dichloroethane were added to the system, these compounds were also dehalogenated to ethene. In contrast, 1,1,1-trichloroethane was not dehalogenated, but at 40 µM severely inhibited acetogenesis and methanogenesis. When the concentration of TCE in the feed was raised to 220 µM, chloroethene transiently accumulated, but after an adaptation period ethene was again the only volatile product detected in the effluent. The volumetric degradation rate at this stage amounted to 6.2 µmol/l/h. Since complete transformation of TCE occurred in the first sixth of the reactor volume, the degradation capacity of the system is estimated to exceed this value by factor of about ten.Abbreviations CA chloroethane - 1,1-DCA 1,1-dichloroethane - 1,2-DCA 1,2-dichloroethane - 1,1-DCE 1,1-dichloroethene - c-DCE cis-1,2-dichloroethene - t-DCE trans-1,2-dichloroethene - PCE tetrachloroethene, perchloroethene - 1,1,1-TCA 1,1,1-trichloroethane - TCE trichloroethene - VC chloroethene, vinyl chloride  相似文献   

8.
Three types of coimmobilized methanogenic and methanotrophic bacterial beads – Ca-alginate, Ba-alginate, and Ca-alginate chitosan – were used for tetrachloroethene (PCE) degradation. For the purpose of effective preparation of coimmobilized bacterial beads, the diameter and broken-loading of beads were measured. The activity tests to find the optimal bacteria concentration in the bead were performed. It was found that Ba-alginate beads had superiority in bacterial growth and the degree of strength of beads from the diameter and broken-loading tests. Also, it was shown that it is most effective to add 200 mL of methanogens into 500 mL of 2% alginate solution and 20 mL of methanotrophs into 500 mL to 2% alginate solution. When methanogens and methanotrophs were applied with the Ba-alginate bead in the actual dechlorination of PCE, the biological PCE dechlorination rate was 92%, and there was highly effective degradation of PCE based on the coimmobilized bead. Additionally, relation to the diameter (X) and broken-loading (Y) of the Ba-alginate bead was derived following equation, Y = 438.02 exp(–1.4815 X).  相似文献   

9.
This study compares three molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP), RFLP analysis with clone sequencing, and quantitative PCR (Q-PCR) for surveying differences in microbial communities at two contaminated field sites that exhibit dissimilar chlorinated solvent degradation activities. At the Idaho National Engineering and Environmental Laboratory (INEEL), trichloroethene (TCE) was completely converted to ethene during biostimulation with lactate. At Seal Beach, California, perchloroethene (PCE) was degraded only to cis-dichloroethene (cDCE) during biostimulation but was degraded to ethene after bioaugmentation with a dechlorinating culture containing Dehalococcoides strains. T-RFLP analysis showed that microbial community composition differed significantly between the two sites, but was similar within each site among wells that had low or no electron donor exposure. Analysis of INEEL clone libraries by RFLP with clone sequencing revealed a complex microbial population but did not identify any Dehalococcoides strains. Q-PCR targeting the 16S rRNA gene of Dehalococcoides strains – known for their unique capability to dechlorinate solvents completely to ethene – revealed a significant population at INEEL, but no detectable population at Seal Beach prior to bioaugmentation. Detection of Dehalococcoides by Q-PCR correlated with observed dechlorination activity and ethene production at both sites. Q-PCR showed that Dehalococcoides was present in even the pristine well at INEEL, suggesting that the difference in dechlorination ability at the two sites was due to the initial absence of this genus at Seal Beach. Of the techniques tested, Q-PCR quantification of specific dechlorinating species provided the most effective and direct prediction of community dechlorinating potential.  相似文献   

10.
Thermodynamic data that the reductive dechlorination of 3-chlorobenzoate is exergonic have led to the hypothesis that this reaction yields biologically useful energy. This hypothesis was tested with strain DCB-1, a dehalogenating bacterium. The organism was grown under strictly anaerobic conditions in vitamin-amended mineral medium with formate plus acetate as electron donor and 3-chlorobenzoate as electron acceptor. The cell yield increased stoichiometrically to the amount of 3-chlorobenzoate dechlorinated. No growth was observed in the absence of 3-chlorobenzoate, or when 3-chlorobenzoate was replaced by benzoate. To obtain further evidence on that energy is derived from dechlorination, 3-chlorobenzoate was added to starved cells. This amendment resulted in an increase in the ATP level of the cells at 10 nmol per mg protein versus 3 nmol per mg protein in non-amended controls. These data indicate that the reductive dehalogenation of chlorinated aromatic compounds can be coupled to a novel type of chemotrophy.  相似文献   

11.
The potential of using nitrate as a terminal electron acceptor to stimulate anaerobic degradation of mixtures of monochlorophenols (MCPs) or dichlorophenols (DCPs) was evaluated. Contaminated and non-contaminated soils were added to water saturated anaerobic microcosms supplemented with 1 mM or 5 mM nitrate. Denitrification and dechlorination activity were present in three diverse soil types and were maintained upon refeeding both nitrate and the appropriate chlorophenol. However, dechlorination activity could only be serially transferred in enrichments with an added electron donor such as acetate. Dehalogenation activity in enrichments from four of the primary microcosms showed at least five different dechlorination reactions, each mediated by different microbial communities. Three of these are distinct ortho-dechlorinating paths; two are meta-dechlorinating and one is the para-dechlorination of 3,4-DCP. Simultaneous dechlorination and denitrification was observed and both activities could be maintained in microcosms but only in the presence of low nitrate concentrations. Dechlorination and denitrification were mediated by two separate microbial communities; one that dechlorinates without use of nitrate and one that denitrifies while oxidizing the dechlorinated aromatic ring. There was no evidence that dechlorination is mediated by the denitrifying community, however the maintenance of a denitrification potential using low (< 1 mM) nitrate concentrations may be useful for completing the food chain by stimulating the mineralization of phenol and benzoate.  相似文献   

12.
Two biokinetic models employing the Michaelis-Menten equation for anaerobic reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) were developed. The models were compared with results from batch kinetic tests conducted over a wide range of PCE and TCE concentrations with two different dechlorinating cultures. One model applies Michaelis-Menten kinetics with competitive inhibition among chlorinated aliphatic hydrocarbons (CAHs), while the other model includes both competitive inhibition and Haldane inhibition at high CAH concentrations. Model simulations with competitive inhibition simulated the experimental results well for PCE concentrations lower than 300 microM. However, simulations deviated from the experimental observations for PCE or TCE concentrations greater than 300-400 microM. The kinetic model that incorporated both competitive and Haldane inhibitions better simulated experimental data for PCE concentrations near the solubility limit (1000 microM), and TCE concentrations at half its solubility limit (4000 microM). Based on the modeling analysis of the experimental results, the PM culture (Point Mugu, CA) had very high Haldane inhibition constants for cis-1,2-dichlororethylene (c-DCE) and vinyl chloride (VC) (6000 and 7000 microM, respectively), indicating very weak Haldane inhibition, while the EV culture (the Evanite site in Corvallis, OR) had lower Haldane inhibition constants for TCE, c-DCE, and VC of 900, 750, and 750 microM, respectively. The BM culture (a binary mixed culture of the PM and EV cultures) had transformation abilities that represented the mixture of the EV and PM cultures. Model simulations of the BM culture transformation abilities were well represented by separate rate equations and model parameters for the two independent cultures that were simultaneously solved. Modeling results indicated that a combination of competitive and Haldane inhibition kinetics is required to simulate dechlorination over a broad range of concentrations up to the solubility limit of PCE and half the solubility limit of TCE.  相似文献   

13.
Reductive dechlorination of all trichloro- and dichlorobenzene isomers   总被引:2,自引:0,他引:2  
Abstract All three isomers of trichlorobenzene were reductively dechlorinated to monochlorobenzene via dichlorobenzenes in anaerobic sediment columns. The dechlorination was specific: 1,2,3- and 1,3,5-trichlorobenzene were solely transformed to 1,3-dichlorobenzene, while 1,4-dichlorobenzene was the only product of 1,2,4-trichlorobenzene transformation. Microorganisms were responsible for the observed transformations. Since monochlorobenzene and dichlorobenzene are mineralized by bacteria in the presence of oxygen, the process of reductive dechlorination may be an important initial step to obtain complete mineralization of otherwise recalcitrant trichlorobenzenes. This is especially true for the 1,3,5-isomer, which seems to resist biodegradation in oxic environments.  相似文献   

14.
Under aerobic conditions, the enzyme γ-hexachlorocyclohexane dechlorinase (LinA) from Sphingomonas paucimobilis UT26 catalyses the elimination of chlorine atoms from the molecule of γ-hexachlorocyclohexane (γ-HCH) or lindane, a recalcitrant pesticide that is still widely used. In its native metabolic context, LinA starts the biodegradation process of lindane by transforming γ-HCH to 1,2,4 trichlorobenzene (TCB), a less persistent chemical. In an attempt to generate an improved version of this enzyme to be used in lindane bioremediation schemes, we have run an experimental evolution procedure on LinA, using Escherichia coli as the surrogate host. One round of random mutagenesis and subsequent screening for improved dechlorination in vivo sufficed to yield one mutant enzyme (LinAT10), bearing a single substitution C132R, that displayed a two-fold enhanced expression and three-fold enhanced solubility of the enzyme compared to the wild type protein. This resulted in a biological product with a six-fold increase in dechlorination ability when expressed in E. coli. The potential of this protein and its expression system for in situ bioremediation is discussed.  相似文献   

15.
A study with H(2)-based membrane biofilm reactors (MBfRs) was undertaken to examine the effectiveness of direct H(2) delivery in ex-situ reductive dechlorination of chlorinated ethenes. Trichloroethene (TCE) could be reductively dechlorinated to ethene with up to 95% efficiency as long as the pH-increase effects of methanogens and homoacetogens were managed and dechlorinators were selected for during start-up by creating H(2) limitation. Based on quantitative PCR, the dominant bacterial groups in the biofilm at the end of reactor operation were Dehalococcoides, Geobacter, and homoacetogens. Pyrosequencing confirmed the dominance of the dechlorinators and identified Acetobacterium as the key homoacetogen. Homoacetogens outcompeted methanogens for bicarbonate, based on the effluent concentration of acetate, by suppressing methanogens during batch start-up. This was corroborated by the methanogenesis functional gene mcrA, which was 1-2 orders of magnitude lower than the FTHFS functional gene for homoacetogens. Imaging of the MBfR fibers using scanning electron microscopy showed a distinct Dehalococcoides-like morphology in the fiber biofilm. These results support that direct addition of H(2) can allow for efficient and complete reductive dechlorination, and they shed light into how H(2)-fed biofilms, when operated to manage methanogenic and homoacetogenic activity, can be used for ex-situ bioremediation of chlorinated ethenes.  相似文献   

16.
An anaerobic microcosm set up with aquifer material from a 1,1,2,2-tetrachloroethane (TeCA) contaminated site and amended with butyrate showed a complete TeCA dechlorination to ethene. A structure analysis of the microbial community was performed by fluorescence in situ hybridization (FISH) with already available and on purpose designed probes from sequences retrieved through 16S rDNA clone library construction. FISH was chosen as identification tool to evaluate in situ whether the retrieved sequences belong to primary bacteria responsible for the biodegradative reactions. FISH probes identified up to 80% of total bacteria and revealed the absence or the marginal presence of known TeCA degraders and the abundance of two well-known H(2)-utilizing halorespiring bacteria, Sulfurospirillum (32.4 +/- 8.6% of total bacteria) and Dehalococcoides spp. (14.8 +/- 2.8), thereby providing a strong indication of their involvement in the dechlorination processes. These results were supported by the kinetic and thermodynamic analysis which provided indications that hydrogen was the actual electron donor for TeCA dechlorination. The specific probes, developed in this study, for known dechlorinators (i.e., Geobacter, Dehalobacter, and Sulfurospirillum species) represent a valuable tool for any future in situ bioremediation study as well as a quick and specific investigation tool for tracking their distribution in the field.  相似文献   

17.
A H(2)-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks, suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H(2) pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H(2) bio-availability caused by a low H(2) pressure or competition from sulfate reduction.  相似文献   

18.
Strain TEA, a strictly anaerobic, motile rod with one to four lateral flagella and a crystalline surface layer was isolated from a mixed culture that completely reduces chlorinated ethenes to ethene. The organism coupled reductive dehalogenation of tetrachloroethene or trichloroethene to cis-1,2-dichloroethene to growth, using molecular hydrogen as the electron donor. It was unable to grow fermentatively or in the presence of tri- or tetrachloroethene with glucose, pyruvate, lactate, acetate or formate. The 16S rDNA sequence of strain TEA was 99.7% identical to that of Dehalobacter restrictus. The two organisms thus are representatives of the same species or the same genus within the Bacillus/Clostridium subphylum of the gram-positive bacteria.  相似文献   

19.
Concentrated cell suspensions of methanogenic bacteria reductively dechlorinated 1,2-dichloroethane via two reaction-mechanisms: a dihalo-elimination yielding ethylene and two hydrogenolysis reactions yielding chloroethane and ethane, consecutively. The transformation of chloroethane to ethane was inhibited by 1,2-dichloroethane. Stimulation of methanogenesis caused an increase in the amount of dechlorination products formed, whereas the opposite was found when methane formation was inhibited. Cells of Methanosarcina barkeri grown on H2/CO2 converted 1,2-dichloroethane and chloroethane at higher rates than acetate or methanol grown cells.Abbreviations BrES 2-bromoethanesulfonic acid - CA chloroethane - 1,2-DCA 1,2-dichloroethane - F430 Ni(II)tetrahydro-(12, 13)-corphin with an uroporphinoid (III) ligand skeleton  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号