共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Complete assignment of the (1)H and (13)C NMR spectra of all possible d-glucopyranosyl-d-glucopyranosides was performed and the (1)H chemical shifts and proton-proton coupling constants were refined by computational spectral analyses (using PERCH NMR software) until full agreement between the calculated and experimental spectra was achieved. To support the experimental results, the (1)H and (13)C chemical shifts and the spin-spin coupling constants between the non-hydroxyl protons of alpha- and beta-d-glucopyranose (1a and 1b) were calculated with density functional theory (DFT) methods at the B3LYP/pcJ-2//B3LYP/6-31G(d,p) level of theory. The effects of different glycosidic linkage types and positions on the glucose ring conformations and on the alpha/beta-ratio of the reducing end hydroxyl groups were investigated. Conformational analyses were also performed for anomerically pure forms of methyl d-glucopyranosides (13a and 13b) and fully protected derivatives such as 1,2,3,4,6-penta-O-acetyl-d-glucopyranoses (14a and 14b). 相似文献
3.
Yates EA Santini F De Cristofano B Payre N Cosentino C Guerrini M Naggi A Torri G Hricovini M 《Carbohydrate research》2000,329(1):239-247
1H, 13C NMR chemical shifts and 1J(CH) coupling constants were measured for derivatives of heparin containing various sulfation patterns. 1H and 13C chemical shifts varied considerably after introducing electronegative sulfate groups. Chemical shifts of protons linked to carbons changed by up to 1 ppm on substitution with O- and N-sulfate or acetyl groups. Differences up to 10 ppm were detected for 13C chemical shifts in substituted glucosamine, but a less clear dependence was found in iduronate. 1J(CH) values formed two groups, corresponding to either sulfation or non-sulfation at positions 2 and 3 of glucosamine. O-sulfation caused increases up to 6 Hz in 1J(CH) and N-sulfation decreases up to 4 Hz. N-acetylation gave similar 1J(CH) values to N-sulfation. At positions 2 and 3 of iduronate the trend was less marked; 1J(CH) for O-sulfated positions usually increasing. Introduction of sulfate groups influences chemical shift and 1J(CH) values at the position of substitution, but also at more remote positions. 1J(CH) at the glycosidic linkage positions varied between free-amino and N-sulfated compounds, by up to 9 Hz. These results and changes in chemical shift values suggest that iduronate residues and the glycosidic linkages are affected, indicating overall conformational change. This may have important implications for biological activities. 相似文献
4.
QSAR calculations of (13)C NMR chemical shifts (ppm, TMS=0) on carbinol carbon atoms have been attempted using a large set of distance based topological indices: Wiener (W)-, Szeged (Sz)-, PI (Padmakar-Ivan) and Connectivity ((m)chi, (m)chi(v)) indices. The regression analysis has shown that excellent results are obtained in multiparametric regression. The predictive power of the proposed models are discussed using cross-validated parameters. 相似文献
5.
Hubert G. Theuns Richard H.A.M. Janssen Hubertus W.A. Biessels Cornelis A. Salemink 《Phytochemistry》1985,24(1):163-169
Two non-alkaloidal constituents were identified in Papaver bracteatum: O-methyl-α-thebaol and 10-n-nonacosanol. O-Methyl-α-thebaol is a new natural compound. The presence of isothebaine is confirmed. Lanthanide-induced chemical shifts can be used for the assignments of the 13C NMR chemical shifts of isothebaine and phenanthrenes. The use of lanthanide-induced chemical shifts in the identification of methoxyl resonances in 1H NMR is discussed. 相似文献
6.
Summary Essentially complete assignments have been obtained for the1H and protonated13C NMR spectra of the zinc finger peptide Xfin-31 in the presence and absence of zinc. The patterns observed for the1H and13C chemical shifts of the peptide in the presence of zinc, relative to the shifts in the absence of zinc, reflect the zinc-mediated folding of the unstructured peptide into a compact globular structure with distinct elements of secondary structure. Chemical shifts calculated from the 3D solution structure of the peptide in the presence of zinc and the observed shifts agree to within ca. 0.2 and 0.6 ppm for the backbone CaH and NH protons, respectively. In addition, homologous zinc finger proteins exhibit similar correlations between their1H chemical shifts and secondary structure. 相似文献
7.
8.
R A Bell D Alkema J M Coddington P A Hader D W Hughes T Neilson 《Nucleic acids research》1983,11(4):1143-1149
A set of parameters, devised for the prediction of 1H NMR chemical shifts of heterobase and anomeric protons in the high temperature (greater than 70 degrees C) spectra of RNA oligomers has been found to be applicable to the corresponding DNA oligomers. Fifteen examples of DNA oligomers that have had high temperature spectra recorded and assigned show a mean absolute difference between predicted and assigned shifts of 0.045 ppm. The parameters for uridine H-5 are applied to the calculation of thymidine methyl group shifts and give excellent agreement with experimental assigned shifts. The RNA parameter set is a practical means of assigning heterobase and anomeric protons in DNA oligomers. A programme using the RNA parameter set has been written which enables the sequence of short DNA oligomers to be predicted from their 1H NMR spectra. 相似文献
9.
C Giessner-Prettre 《Journal of biomolecular structure & dynamics》1985,3(1):145-160
The magnetic shielding constant of the different 13C and 1H nuclei of a deoxyribose are calculated for the C2' endo and C3' endo puckerings of the furanose ring as a function of the conformation about the C4'C5' bond. For the carbons the calculated variations are of several ppm, the C3' endo puckering corresponding in most cases to a larger shielding than the C2' endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose-3' and 5' phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides. The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices. 相似文献
10.
A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1H), 0.980 (13C), 0.996 (13C), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca. 相似文献
11.
With molecular dynamics simulations of phospholipid membranes becoming a reality, there is a growing need for experiments that provide the molecular details necessary to test these computational results. Pyridine is used here to explore the interaction of planar aromatic groups with the water-lipid interface of membranes. It is shown by magic angle spinning 13C nuclear magnetic resonance (NMR) to bind between the glycerol and choline groups of dimyristoylphosphatidylcholine (DMPC) liposomes. The axial pattern for the 31P NMR spectrum of DMPC liposomes is preserved even with more than half of the interfacial sites occupied, indicating that pyridine does not disrupt the lamellar phase of this lipid. 2H NMR experiments of liposomes in deuterium oxide demonstrate that pyridine might promote greater penetration of water into restricted regions in the interface. Magnetically oriented DMPC/surfactant micelles were investigated as a means for improving resolution and sensitivity in NMR studies of species bound to bilayers. The quadrupolar splittings in the 2H NMR spectra of d5-pyridine in DMPC liposomes and magnetically oriented DMPC/Trixon X-100 micelles indicate a common bound state for the two bilayer systems. The well resolved quadrupolar splittings of d5-pyridine in oriented micelles were used to establish the tilt of the pyridine ring relative to the bilayer plane. 相似文献
12.
1H, 13C and 15N chemical shift referencing in biomolecular NMR 总被引:23,自引:2,他引:23
David S. Wishart Colin G. Bigam Jian Yao Frits Abildgaard H. Jane Dyson Eric Oldfield John L. Markley Brian D. Sykes 《Journal of biomolecular NMR》1995,6(2):135-140
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS
tetramethylsilane
- TSP
3-(trimethylsilyl)-propionate, sodium salt
- DSS
2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt
- TFE
2,2,2-trifluoroethanol
- DMSO
dimethyl sulfoxide 相似文献
13.
Heydorn A Petersen BO Duus JO Bergmann S Suhr-Jessen T Nielsen J 《The Journal of biological chemistry》2000,275(9):6201-6206
The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-(13)C]glucose or 9.7% [U-(13)C]glucose. The fractional enrichment pattern of teicoplanin produced in the medium containing [1-(13)C]glucose was obtained from a one-dimensional (13)C spectrum. The enrichment pattern showed characteristic peaks indicating that amino acids 3 and 7 are derived from acetate, whereas amino acids 1, 2, 4, 5, and 6 are derived from tyrosine. Multiplet structures in heteronuclear single quantum coherence spectra of teicoplanin produced in the medium containing [U-(13)C]glucose showed characteristic coupling patterns supporting these results. Fractional enrichment patterns and multiplet structures of the three sugars in teicoplanin showed that about 50% of the sugars have the same labeling pattern as the glucose substrate whereas the rest have a labeling pattern showing that they are reassembled, probably from precursors in the primary metabolism. 相似文献
14.
15.
16.
pH-dependence of 13C chemical shifts and 13C,H coupling constants in imidazole and L-histidine. 下载免费PDF全文
The pH-dependence of selected 13C chemical shifts reflects the state of ionization of the imidazole ring in both imidazole and L-histidine. Titration of the amino and carboxyl groups of histidine also perturbs the shifts. The coupling constants 1J (13C(2),H) and 1J (13C(5),H) for both compounds also vary with pH, but in L-histidine these constants are relatively insensitive to the titration of groups outside the imidazole ring. 相似文献
17.
The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to monitor drug 13C NMR chemical shifts changes. The binding mode of netropsin to the minor groove of DNA is well-known, and served as a good model for evaluating the relative sensitivity of 13C chemical shifts to hydrogen bonding. Large downfield shifts were observed for four resonances of carbons that neighbor sites which are known to form hydrogen bond interactions with the DNA minor groove. Many of the remaining resonances of netropsin exhibit shielding or relatively smaller deshielding changes. Based on the model system presented here, large deshielding NMR shift changes of a ligand upon macromolecule binding can likely be attributed to hydrogen bond formation at nearby sites. 相似文献
18.
The polyunsaturated fatty acid docosahexaenoic acid (DHA) makes up approximately 50% of the lipid chains in the retinal rod outer segment disk membranes and a large fraction of the lipid chains in the membranes of neuronal tissues. There is an extensive literature concerned with the dietary requirements for essential fatty acids and the importance of DHA to human health, but relatively little research has been done on the physical properties of this important molecule. Using (1)H and (13)C MAS NMR measurements of dispersions of 1-palmitoyl-2-docosahexaenoyl-phosphatidylcholine in excess phosphate buffer, we have unambiguously assigned most of the resonances in both the (1)H and (13)C NMR spectra. We were able to use cross-polarization spectroscopy to follow the transfer of polarization from specific (1)H nuclei not only to their directly bonded (13)C but also to those (13)C that are in close proximity, even though they are not directly bonded. Cross-peaks in two-dimensional cross-polarization spectra revealed a close association between the choline headgroup and at least part of the DHA chain but not with the palmitate chain. Finally, we examined the dynamics of the different parts of this lipid molecule, using rotating frame spin-lattice relaxation measurements, and found that methylene groups of both chains experience important motions with correlation times in the 10-micros range, with those for the palmitate chain being approximately 50% longer than those of the DHA chain. The choline headgroup and the chain terminal groups have significantly shorter correlation times, and that part of the dipolar interaction that is fluctuating at these correlation times is significantly smaller for these groups than it is for the palmitate and DHA chain methylenes. 相似文献
19.
The substrate-like inhibition of serine proteinases by avian ovomucoid domains has provided an excellent model for protein inhibitor-proteinase interactions of the standard type. 1H,15N and 13C NMR studies have been undertaken on complexes formed between turkey ovomucoid third domain (OMTKY3)2 and chymotrypsin A(alpha) (Ctr) in order to characterize structural changes occurring in the Ctr binding site of OMTKY3. 15N and 13C were incorporated uniformly into OMTKY3, allowing backbone resonances to be assigned for OMTKY3 in both its free and complex states. Chemical shift perturbation mapping indicates that the two regions, K13-P22 and N33-A40, are the primary sites in OMTKY3 involved in Ctr binding, in full agreement with the 12 consensus proteinase-contact residues of OMTKY3 defined previously on the basis of X-ray crystallographic and mutational analysis. Smaller chemical shift perturbations in selected other regions may result from minor structural changes on binding. Through-bond 15N-13C correlations between P1-13C' and P1'-15N in two-dimensional H(N)CO and HN(CO) NMR spectra of selectively labeled OMTKY3 complexed with Ctr indicate that the scissile peptide bond between L18 and E19 of the inhibitor is intact in the complex. The chemical shifts of the reactive site peptide bond indicate that it is predominantly trigonal, although the data are not inconsistent with a slight perturbation of the hybridization of the peptide bond toward the first tetrahedral state along the reaction coordinate. 相似文献
20.
A 1H and 13C NMR study of motional changes of dipalmitoyl lecithin associated with the pretransition 下载免费PDF全文
Motional changes of the dipalmitoyl lecithin molecule associated with the pretransition in multibilayers are investigated by proton-enhanced 13C-NMR and proton spin-locking experiments. The nitrogen-bound methyl groups of the polar head exhibit faster motion and more disorder in the intermediate phase compared with the gel phase. Although little or no change occurs in the hydrocarbon chain order at the pretransition, the corresponding motional correlation time changes by one order of magnitude. This is consistent with a model involving rotational motion of the hydrocarbon chains about their long axes: in the gel phase the motion is such that neighboring chains make an oscillating disrotatory motion, while in contrast, in the intermediate phase a quasi-free chain rotation takes place. Earlier contradicting results of Davies, J., 1979, Biophys. J., 27:339-358, and ourselves, Trahms, L., and E. Boroske, 1979, Biochim, Biophys. Acta. 552:189-193, are explained by this model. 相似文献