首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freeze-drying allows double nonradioactive ISH and antigenic labeling.   总被引:1,自引:0,他引:1  
Because tissue freeze-drying is an excellent way to preserve antigenic conformation, we have tested the feasibility of this technique to reveal nonradioactive in situ hybridization (ISH) of tissue mRNA. We have compared mRNA detection after different methods of tissue preservation, freeze-drying, cryosectioning, and formaldehyde or methanol fixation. Our results show that nonradioactive ISH is more sensitive for tissues preserved by freeze-drying than for other tissue preparations. We have demonstrated that freeze-drying allows combination of ISH and immunohistochemistry for simultaneous detection of mRNA and antigen because with this technique of tissue preservation ISH does not affect the sensitivity or the amount of the detected antigens. This work underscores the fact that tissue freeze-drying is an easy, convenient, and reliable technique for both ISH and immunohistochemistry and achieves excellent structural conditions for nonradioactive detection.  相似文献   

2.
Nonradioactive in situ hybridization to xenopus tissue sections   总被引:2,自引:0,他引:2  
  相似文献   

3.
In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.  相似文献   

4.
We present a protocol for detection of peroxisomal proteins and their corresponding mRNAs on consecutive serial sections of fetal and newborn mouse tissues by immunohistochemistry (IHC) and nonradioactive in situ hybridization (ISH). The use of perfusion-fixation with depolymerized paraformaldehyde combined with paraffin embedding and digoxigenin-labeled cRNA probes provided a highly sensitive ISH protocol, which also permitted immunodetection with high optical resolution by light and/or fluorescence microscopy. Signal enhancement was achieved by the addition of polyvinyl alcohol (PVA) for ISH color development. For IHC, signal amplification was obtained by antigen retrieval combined with biotin-avidin-HRP and Nova Red as substrate or by the catalyzed reporter deposition of fluorescent tyramide. Using this protocol, we studied the developmental changes in localization of the peroxisomal marker enzymes catalase (CAT) and acyl-CoA oxidase 1 (AOX), the key regulatory enzyme of peroxisomal beta-oxidation, at the protein and mRNA levels in mice from embryonic Day 14.5 to birth (P0.5). The mRNA signals for CAT and AOX were detected in sections of complete fetuses, revealing organ- and cell-specific variations. Here we focus on the localization patterns in liver, intestine, and skin, which showed increasing mRNA amounts during development, with the strongest signals in newborns (P0.5). Immunolocalization of the corresponding proteins revealed, in close correlation with the mRNAs, a distinct punctate staining pattern corresponding to the distribution of peroxisomes. (J Histochem Cytochem 49:155-164, 2001)  相似文献   

5.
High-resolution in situ hybridization to whole-mount zebrafish embryos   总被引:3,自引:0,他引:3  
The in situ hybridization (ISH) technique allows the sites of expression of particular genes to be detected. This protocol describes ISH of digoxigenin-labeled antisense RNA probes to whole-mount zebrafish embryos. In our method, PCR-amplified sequence of a gene of interest is used as a template for the synthesis of an antisense RNA probe, which is labeled with digoxigenin-linked nucleotides. Embryos are fixed and permeabilized before being soaked in the digoxigenin-labeled probe. We use conditions that favor specific hybridization to complementary mRNA sequences in the tissue(s) expressing the corresponding gene. After washing away excess probe, hybrids are detected by immunohistochemistry using an alkaline phosphatase-conjugated antibody against digoxigenin and a chromogenic substrate. The whole procedure takes only 3 days and, because ISH conditions are the same for each probe tested, allows high throughput analysis of zebrafish gene expression during embryogenesis.  相似文献   

6.
In situ hybridization (ISH) to detect and to quantitate viral nucleic acid sequences in cryopreserved central nervous system (CNS) tissue is a reliable, valid and sensitive molecular technique. On the other hand, utilization of formaldehyde fixed paraffin embedded (FFPE) tissue to improve cytomorphology requires fundamental changes in the procedure since it is necessary to cleave the elaborate protein network cross-linked by formaldehyde using elevated concentration of proteinases in order to permit diffusion of complementary DNA probes to the targets (genomic viral nucleic acid sequences and/or viral mRNA). Adversely, this procedure hydrolized the proteinaceous glues generally used to fix tissue to glass slides resulting in loss of tissue sections during the ISH protocol. This report describes the application of a novel procedure utilizing a silano-organic compound to covalently bond to glass slides FFPE sections as well as cryopreserved tissue sections and cultured cells with and without virus infections. This covalent bonding procedure has permitted optimization of the ISH procedure for virus detection and quantification, especially for exploratory studies of specificity and wash stringency in relation to the Tm of the hybridized product. Progressive multifocal leucoencephalopathy (PML) caused by an opportunistic papovavirus (JC) was chosen because of the ready availability of tissue, stability of papovavirus nucleic acids, and specificity of3H-and35S-radiolabeled JC cloned DNA probes. Further, this laboratory is utilizing the optimized sensitive procedure to search for several virus etiologies in human diseases such as multiple sclerosis, temporal lobe epilepsy, Alzheimer's disease, schizophrenia, and Parkinson's disease, as well as normal aging. Fanally, the procedure permits study of 100% of thin serial sections; hence, alternate sections can be hybridized with sense and antisense riboprobes to detect viral genome and its mRNA or stained, immunocytochemically, to detect viral proteins. Accordingly, it is anticipated that the mechanism of persistent CNS viral infections will be deciphered, at least in part by advances in cytological molecular hybridization.  相似文献   

7.
8.
9.
We applied in situ hybridization and the TUNEL technique to free-floating (vibratomed) sections of embryonic and postnatal mouse CNS. Full-length cDNAs specific for oligodendrocyte- or astrocyte-specific genes were labeled with digoxigenin using the random primer method. With paraformaldehyde-fixed sections, the nonradioactive in situ hybridization method provides detection of individual, very small glial progenitor cells in embryonic development. Small, isolated cells expressing oligodendrocyte specific messages can be detected in the neuroepithelium at embryonic and postnatal stages. The technique can be completed within 3 days and is as sensitive as the radioactive method. Likewise, the TUNEL method using DAB as the chromogen on free-floating sections provides excellent resolution. These DAB-stained sections can be embedded in plastic and thin-sectioned to visualize the ultrastructure of apoptotic cells. Both in situ hybridization and TUNEL methods can be applied to the same section, the tissue embedded in plastic, and semithin sections cut. The high resolution obtained with this combined procedure makes it possible to determine whether brain cells expressing glia-specific messages are undergoing apoptosis.  相似文献   

10.
In a attempt to improve the sensitivity of the simultaneous use of immunohistochemistry (IHC) with estrogen receptor (ER) and in situ hybridization (ISH) with a neuropeptide receptor, we first applied an existing microwave (MW) irradiation protocol for immunohistochemical detection of the estrogen receptor in frozen brain sections. Regions of interest were the preoptic area and the arcuate nucleus of the hypothalamus. ER signal was effective only after MW heating of sections in the two regions. Control sections without pretreatment exhibited no staining for ER. Second, the MW protocol was applied in a novel procedure that consists of evaluation of the expression of the galanin receptor mRNA with a radioactive riboprobe after MW pretreatment. The galanin receptor mRNA signal intensity obtained after heating was quantitatively at least as good or significantly increased according to the region, with no discernible loss of tissue morphology. Finally, we describe a novel application of MW pretreatment on the same frozen section processed with ER antibody and a radioactive galanin receptor riboprobe. The stainings for estrogen and galanin receptors were intense in many cells of the preoptic area, with very low background. These results show that both IHC and ISH can be significantly improved by subjecting frozen sections to MW heating before the double labeling. This approach may provide a potential method to answer the important question of whether or not estrogen has a direct action on the expression of a peptide receptor. (J Histochem Cytochem 49:901-910, 2001)  相似文献   

11.
12.
13.
Catalase, the classical peroxisomal marker enzyme, decomposes hydrogen peroxide and is involved in the antioxidant defense mechanisms of mammalian cells. In addition, catalase can oxidize, by means of its peroxidatic activity, a variety of substrates such as methanol and ethanol, producing the corresponding aldehydes. The involvement of brain catalase in the oxidation of ethanol is well established, and severe afflictions of the CNS in hereditary peroxisomal diseases (e.g., Zellweger syndrome) are well known. Whereas the distribution of catalase in the CNS has been investigated by enzyme histochemistry and immunohistochemistry (IHC), very little is known about the exact localization of catalase mRNA in brain. Here we report the application of a tyramine/CARD (catalyzed reporter deposition)-enhanced nonradioactive in situ hybridization (ISH) protocol for detection of catalase mRNA in sections of perfusion-fixed, paraffin-embedded rat brain. Catalase mRNA could be demonstrated in a large number of neurons throughout the rat brain as a distinct cytoplasmic staining signal with excellent morphological resolution. Compared to our standard ISH protocol, the CARD-enhanced protocol for catalase mRNA detection in rat brain showed higher sensitivity and significantly better signal-to-noise ratio. In parallel IHC experiments, using an antigen retrieval method consisting of combined trypsin digestion and microwave treatment of paraffin sections, the catalase antigen was found as distinct cytoplasmic granules in most catalase mRNA-positive neurons. In addition, catalase-positive granules, presumably peroxisomes, were found by confocal laser scanning microscopy in glial cells, which were identified by double labeling immunofluorescence for GFAP and CNPase for astroglial cells and oligodentrocytes, respectively. The excellent preservation of morphology and sensitive detection of both mRNA and protein in our preparations warrant the application of the protocols described here for systematic studies of catalase and other peroxisomal proteins in diverse pathological conditions such as Alzheimer's disease and aging.  相似文献   

14.
Here we describe a fluorescence in situ hybridization protocol that allows for the detection of two mRNA species in fresh frozen brain tissue sections. This protocol entails the simultaneous and specific hybridization of hapten-labeled riboprobes to complementary mRNAs of interest, followed by probe detection via immunohistochemical procedures and peroxidase-mediated precipitation of tyramide-linked fluorophores. In this protocol we describe riboprobes labeled with digoxigenin and biotin, though the steps can be adapted to labeling with other haptens. We have used this approach to establish the neurochemical identity of sensory-driven neurons and the co-induction of experience-regulated genes in the songbird brain. However, this procedure can be used to detect virtually any combination of two mRNA populations at single-cell resolution in the brain, and possibly other tissues. Required controls, representative results and troubleshooting of important steps of this procedure are presented. After tissue sections are obtained, the total length of the procedure is 2-3 d.  相似文献   

15.
In situ hybridization (ISH) using nonradioactive probes enables mRNAs to be detected with improved cell resolution but compromised sensitivity compared to ISH with radiolabeled probes. To detect rare mRNAs, we optimized several parameters for ISH using digoxygenin (DIG)-labeled probes, and adapted tyramide signal amplification (TSA) in combination with alkaline phosphatase (AP)-based visualization. This method, which we term TSA-AP, achieves the high sensitivity normally associated with radioactive probes but with the cell resolution of chromogenic ISH. Unlike published protocols, long RNA probes (up to 2.61 kb) readily permeated cryosections and yielded stronger hybridization signals than hydrolyzed probes of equivalent complexity. RNase digestion after hybridization was unnecessary and led to a substantial loss of signal intensity without significantly reducing nonspecific background. Probe concentration was also a key parameter for improving signal-to-noise ratio in ISH. Using these optimized methods on rat taste tissue, we detected mRNA for mGluR4, a receptor, and transducin, a G-protein, both of which are expressed at very low abundance and are believed to be involved in chemosensory transduction. Because the effect of the tested parameters was similar for ISH on sections of brain and tongue, we believe that these methodological improvements for detecting rare mRNAs may be broadly applicable to other tissues. (J Histochem Cytochem 47:431-445, 1999)  相似文献   

16.
In situ hybridization (ISH) of somatostatin (SOM) mRNA was carried out on sections of rat brain using an alkaline phosphatase (AP) coupled oligonucleotide probe. Different hybridization and AP development conditions were tested for qualitative and quantitative detection of target mRNA on sections of unfixed tissue. Hybridization signal intensities after 24 h of hybridization were high. Comparison with adjacent formaldehydefixed tissue sections and hybridization for various lengths of time (2–42 h) indicated that in unfixed tissue retention of SOM mRNA was at least as high as after fixation, and that the mRNA was not degraded during hybridization. The use of tetranitroblue instead of nitroblue tetrazolium chloride in the AP detection medium provided a superior signal-to-noise ratio, and medium stability was improved for quantitative studies on unfixed sections by adding 10% polyvinyl alcohol at pH 8.5. Microphotometric measurements of mean optical densities (MOD) of the formazan reaction product in a defined area within individual neurons of the lateral central amygdaloid nucleus showed a linear increase over the first 23 h of AP reaction time. The mean MOD values per neuron were comparably high in various equally thick sections of the nucleus and increased with section thickness in a linear manner. The findings indicate that the ISH and detection reagents penetrate the entire section and that there is a linear relationship between the amount of AP reaction product measured and the amount of mRNA present in the measured area. Thus, ISH using an AP-coupled oligonucleotide on sections of unfixed tissue appears suitable for quantitative mRNA detection.  相似文献   

17.
An improved chemiluminescence-based RNA/DNA detection procedure offering a widely applicable alternative to the conventional 32P labeling employed in molecular biology is described. Even highly sensitive applications such as Northern blot analysis of low-copy RNAs are shown to be feasible now without radioactive labeling. Improved quality of nonradioactive detection was obtained by the use of digoxigenin-labeled nucleotides in combination with dioxetane substrates which are decomposed by the hydrolysis of alkaline phosphatase. Previously existing problems involving unacceptably high background signals in nonradioactive labeling procedures were eliminated by the application of a modified RNA/DNA transfer, hybridization, and detection protocol. The data presented here delineate a system consistently superior to radioactivity and should considerably increase the usefulness of nonradioactively labeled probes detected by chemiluminescence.  相似文献   

18.
This study examined the detection of cellular poly(A) sequences in mouse liver sections by in situ hybridization using a 3H-labelled poly(dT) probe. Parameters examined included possible losses of target poly(A) sequences from sectioned cells, access of probe to target sequences, section thickness, hybridization conditions, autoradiographic efficiency, specific activity of probes and specificity of reaction. An improved protocol was devised that resulted in good preservation of histological detail in sectioned tissue blocks, and a calculated hybridization efficiency of 50%-100%. With the use of probes of defined sequence, the protocol should allow detection of unique mRNA sequences within single cells with an estimated sensitivity of 6-12 unique mRNA molecules per sectioned cell.  相似文献   

19.
Visualization of spatiotemporal expression of a gene of interest is a fundamental technique for analyzing the involvements of genes in organ development. In situ hybridization (ISH) is one of the most popular methods for visualizing gene expression. When conventional ISH is performed on sections or whole-mount specimens, the gene expression pattern is represented in 2-dimensional (2D) microscopic images or in the surface view of the specimen. To obtain 3-dimensional (3D) data of gene expression from conventional ISH, the “serial section method” has traditionally been employed. However, this method requires an extensive amount of time and labor because it requires researchers to collect a tremendous number of sections, label all sections by ISH, and image them before 3D reconstruction. Here, we proposed a rapid and low-cost 3D imaging method that can create 3D gene expression patterns from conventional ISH-labeled specimens. Our method consists of a combination of whole-mount ISH and Correlative Microscopy and Blockface imaging (CoMBI). The whole-mount ISH-labeled specimens were sliced using a microtome or cryostat, and all block-faces were imaged and used to reconstruct 3D images by CoMBI. The 3D data acquired using our method showed sufficient quality to analyze the morphology and gene expression patterns in the developing mouse heart. In addition, 2D microscopic images of the sections can be obtained when needed. Correlating 2D microscopic images and 3D data can help annotate gene expression patterns and understand the anatomy of developing organs. These results indicated that our method can be useful in the field of developmental biology.  相似文献   

20.
The porcine gene for luteinizing hormone/choriogonadotropin receptor (LHCGR) was localized to chromosome 3q2.2----q2.3 using radioactive and nonradioactive in situ hybridization. A computer-assisted image-analysis system was developed which facilitated detection of the position of silver grains and fluorescent spots on the chromosomes after in situ hybridization. Compared with autoradiographic visualization, the nonisotopic procedure proved to be more rapid, precise, and highly specific; however, nonradiographic in situ hybridization was much less efficient than the autoradiographic technique for the detection of unique DNA sequences with small probes. From these results and published gene-mapping data, it was concluded that the synteny between LHCGR and MDH1 observed in man is conserved in the pig genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号