首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The euryhaline green crab, Carcinus maenas, is a relatively strong osmotic and ionic regulator, being able to maintain its hemolymph osmolality as much as 300 mOsm higher than that in the medium when the crab is acclimated to low salinity. It makes the transition from osmoconformity to osmoregulation at a critical salinity of 26 ppt, and new acclimated concentrations of hemolymph osmotic and ionic constituents are reached within 12 h after transfer to low salinity. One of the central features of this transition is an 8-fold induction of the enzyme carbonic anhydrase (CA) in the gills. This induction occurs primarily in the cytoplasmic pool of CA in the posterior, ion-transporting gills, although the membrane-associated fraction of CA also shows some induction in response to low salinity. Inhibition of branchial CA activity with acetazolamide (Az) has no effect in crabs acclimated to 32 ppt but causes a depression in hemolymph osmotic and ionic concentrations in crabs acclimated to 10 ppt. The salinity-sensitive nature of the cytoplasmic CA pool and the sensitivity of hemolymph osmotic/ionic regulation to Az confirm the enzyme's role in ion transport and regulation in this species. CA induction is a result of gene activation, as evidenced by an increase in CA mRNA at 24 h after transfer to low salinity and an increase in protein-specific CA activity immediately following at 48 h post-transfer. CA gene expression appears to be under inhibitory control by an as-yet unidentified repressor substance found in the major endocrine complex of the crab, the eyestalk.  相似文献   

2.
Two subcellular fractions of gill tissue, cytoplasm and basolateral membranes, from two species of euryhaline decapod crustaceans, Callinectes sapidus and Carcinus maenas, acclimated to low salinity, were isolated via differential centrifugation. Carbonic anhydrase activity from both fractions was titrated against a variety of heavy metals in vitro. The metals Ag(+), Cd(2+), Cu(2+) and Zn(+) showed inhibitory action against the enzyme. Ki values for these metals against cytoplasmic CA from C. sapidus were in the range of 0.05-0.5 microM (for Ag(+), Cd(2+) and Cu(2+)) and 2-6 microM for Zn(+), some of the highest sensitivities reported for CA from an aquatic organism. The Ki values for these same metals were approximately 2-3 orders of magnitude higher for cytoplasmic CA from C. maenas, indicating that there are significant differences in heavy metal sensitivity in branchial CA from the two species, and that C. maenas possesses a metal-resistant CA isoform. It required concentrations of metals in the millimolar range, however, to inhibit CA activity from the membrane fraction of the gill of both species. There were no effects on either mortality or on hemolymph osmotic and ionic concentrations in C. maenas that were exposed to 10 microM Cd or Zn(+) at 32 per thousand salinity and subsequently transferred to 10 per thousand. The presence of a metal-resistant CA isoform in the gills of C. maenas suggests that this species would not be restricted from its normal estuarine environment by heavy metal pollution.  相似文献   

3.
The relationship between branchial carbonic anhydrase (CA) activity, CA gene expression and salinity, and potential mechanisms of regulation, was investigated in the euryhaline green crab, Carcinus maenas, acclimated to 33 ppt and transferred to 10 ppt, and the stenohaline rock crab, Cancer irroratus, acclimated to 32 ppt and transferred to 18 ppt. CA activity in green crabs acclimated to high and low salinity was a function of CA mRNA expression, with low salinity exposure resulting in an increase in both CA expression and activity. Eyestalk ablation (ESA) in green crabs acclimated to high salinity resulted in an increase in CA expression in the posterior, ion-transporting gills, in the absence of the low salinity stimulus. There were no changes in CA activity or expression in the anterior, respiratory gills. ESA also potentiated low salinity-stimulated CA induction, again, only in posterior gills. There were no changes in CA activity in any gills of Cancer irroratus, in response to either ESA or low salinity. These results suggest that CA expression in euryhaline, osmoregulating species, is under inhibitory regulation by a putative repressor found in the eyestalk, and that this mechanism is absent in stenohaline, osmoconforming species. CA expression is maintained at low, baseline levels in crabs acclimated to high salinity by the presence and action of this compound. The effects of the repressor appear to be reduced upon exposure to low salinity, allowing CA induction to occur.  相似文献   

4.
Carbonic anhydrase (CA) induction in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to lowered environmental salinity. Simultaneous measurements of ornithine decarboxylase (ODC) activity were made in gills and nonbranchial tissues to determine whether ODC activity and the resultant synthesis of polyamines played a role in the initiation and regulation of CA induction. CA induction in the seventh gill pair (G7) was proportional to the decrease in ambient salinity, but activity in the third gill pair (G3) remained unchanged. Induction began by 24 hr after low salinity transfer, much earlier than previously reported, and peaked after 4 days. The magnitude of salinity change affected the magnitude of CA induction only, not the time course. A general cell volume regulatory response, as measured by the appearance of total ninhydrin-positive substances (TNPS) in the hemolymph, was initiated within 4 hr of low salinity transfer and was complete by 24 hr post-transfer. General cell swelling may be the initial signal in the pathway of CA induction. ODC activity in the gills of acclimated animals was not influenced by salinity. For crabs transferred from 35 to 25 ppt, ODC activity did not change significantly over the time course of acclimation. There was an early but transient increase in ODC activity in all tissues for crabs acclimated to 28 ppt and transferred to 15 ppt. Induction of ODC activity does not appear to be a precursor for CA induction; therefore, it does not appear that polyamines are substantially involved in the up-regulation of transport enzyme activity in low salinity. ODC, and resultant polyamine synthesis, may, however, have a role in cell volume regulation.  相似文献   

5.
The time course of induction of activity of carbonic anhydrase (CA) and Na/K ATPase, two enzymes that are central to osmotic and ionic regulation in the eyryhaline green crab, Carcinus maenas, was measured in response to a transfer from 32 to 10 ppt salinity. CA activity was low in all gills in crabs acclimated to high salinity. Activity was induced in the posterior three gills (G6-G9) starting at 96 hr following transfer to low salinity, with activity peaking at seven post-transfer. Na/K ATPase activity in posterior gills was already high in crabs acclimated to 32 ppt salinity, and it did not increase as a result of transfer to 10 ppt. Acclimation of crabs to hypersaline (40 ppt) conditions resulted in uniformly low levels of Na/K ATPase activity, and transfer from 40 ppt to 10 ppt stimulated a four-fold induction of activity in the posterior gills that was evident by seven days of low salinity exposure. Low salinity stimulates the activity of both enzymes, but a different degree of salinity change appears to be necessary to cause the induction of each enzyme. The Na/K ATPase activity is already high at a salinity (32 ppt) at which the crab is still an osmotic and ionic conformer. CA activity, however, even when expressed in low levels, is still present in excess of what is needed to supply counterions at a rate adequate to match the rate of active ion transport. It is possible that two strategies exist for the regulation of these two enzymes that coincide with the crab's intertidal and estuarine lifestyle: short-term modulation of activity of highly expressed enzyme (Na/K ATPase) and long-term modulation of enzyme concentration by changes in gene expression (CA). For all ranges of low salinity exposure, crabs undergo hemodilution, cell swelling, and subsequent cell volume readjustment as evidenced by the increase in concentration of TNPS in the hemolymph. This response takes place before the induction of enzyme activity, and it could serve as the initial signal in the induction pathway.  相似文献   

6.
Carbonic anhydrase (CA) activity and localization have been examined in two species of the eukaryotic green alga Chlorella. Mass spectrometric and potentiometric assays of CA activity indicate that C. ellipsoidea contains very little extracellular CA activity whereas C. saccharophila exhibits significant extracellular activity when grown at alkaline pH values. Extracellular CA activity appears to be correlated with the presence of a 36 kilodalton polypeptide that was detected immunologically using a polyclonal antibody directed against the 37 kilodalton Chlamydomonas CA monomer. Both Chlorella species and enzymatically isolated C. ellipsoidea chloroplasts also contain an immunologically similar 38 kilodalton polypeptide that may be a cytosolic or chloroplastic form of CA.  相似文献   

7.
8.
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH.  相似文献   

9.
Carbonic anhydrase (CAH) activity was biochemically measured and histochemically localized (at both the light and electron microscope levels) in isolated opercular membranes from teleost fish, Fundulus heteroclitus, adapted to freshwater (FW), seawater (SW), and double-strength seawater (2 x SW). The normal morphology of this membrane showed that its epithelial portion consisted of five cell types: (1) chloride cells, which have been previously implicated as responsible for the active chloride transport across the epithelium; (2) mucous cells; (3) pavement cells, which formed the major portion of the free epithelial surface; (4) supportive cells, which had an abundance of intermediate (10 nm)-type filaments suggesting a structural role for these cells; and (5) vesicular cells, which were characterized by various types of membrane-bound vesicles, including lysosomes, and numerous free ribosomes. Vesicular cells may be stem cells and/or endocrine cells. Hansson's histochemical method for CAH revealed cobalt sulfide reaction product confined to the following structures in fish from each environment: (1) chloride cells: throughout the cytoplasm and some nuclear staining; (2) mucous cells: throughout the cytoplasm, some nuclear staining, and some in mucous granules; (3) vesicular cells: confined to lysosomes, some of the vesicles, and nucleoli; (4) a small portion of the intracellular space between adjacent vesicular cells and supportive cells; and (5) supportive cells: in nucleoli and occasionally in larger membrane-bound lysosomelike structures. Acetazolamide (10(-5) M) and potassium cyanate (KCNO) (10(-1) M) in Hansson's incubation medium completely inhibited the formation of reaction product. Biochemical determination of CAH activity on vascularly perfused, isolated opercular membranes showed no statistically significant difference in enzyme activity between environmental groups. The following units of activity/mg opercular membrane protein were measured: FW: 0.63 +/- 0.02; SW: 0.43 +/- 0.08; 2 x SW: 0.64 +/- 0.09.  相似文献   

10.
Crustaceans have been successfully employed to study legged locomotion for decades. Most studies have focused on either forwards-walking macrurans, or sideways-walking brachyurans. Libinia emarginata is a Majoid crab (Brachyura) and as such belongs to the earliest group to have evolved the crab form from homoloid ancestors. Unlike most brachyurans, Libinia walks forwards 80% of the time. We employed standard anatomical techniques and motion analysis to compare the skeleton, stance, and the range of motion of the legs of Libinia to the sideways-walking green shore crab (Carcinus maenas), and to the forwards-walking crayfish (Procambarus clarkii). We found animals tended to have greater ranges of motion for joints articulating in the preferred direction of locomotion. Leg segments proximal to such joints were comparatively longer. Thorax elongation, leg length and placement at rest also reflected walking preference. Comparative studies of walking in Libinia and other brachyurans may shed light on the neuroethology of legged locomotion, and on the anatomical and physiological changes necessary for sideways-walking in crustaceans.  相似文献   

11.
We investigated the influence of salinity (5 ppt versus 25 ppt) on acute (96-h LC50) and chronic toxicity (15–30 day LC50) of Ni in two euryhaline crustaceans, the shrimp (Litopenaeus vannamei) and the isopod (Excirolana armata). 96-h LC50 values were 41 μmol L−1 and 362 μmol L−1 for L. vannamei and 278 μmol L−1 and > 1000 μmol L−1 for E. armata at 5 ppt and 25 ppt, respectively. Speciation analysis demonstrated that complexation with anions such as SO42−, HCO3 and Cl at 25 ppt had a negligible effect on reducing the free Ni2+ ion component in comparison to 5 ppt. The salinity-dependent differences in acute Ni toxicity could not be explained by differences in Ni bioaccumulation. Therefore, differences in physiology of the organisms at the two salinities may be the most likely factor contributing to differences in acute Ni toxicity. Chronic LC50 values (2.7–23.2 μmol L−1) were similar in the two species, but salinity had no significant effect, indicating that water chemistry and osmoregulatory strategy do not influence chronic toxicity. However chronic (15-day) mortality in both species could be predicted by acute (96-h) Ni bioaccumulation patterns.  相似文献   

12.
13.
We studied the participation of carbonic anhydrase (CA), V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion absorption through the gills of Chasmagnathus granulatus. CA activity was measured in anterior gills and posterior gills after acclimation to 2 per thousand, 10 per thousand, 30 per thousand (about seawater), and 45 per thousand salinity. The highest CA specific activity was detected in the microsomal fraction in anterior gills, and in the cytosolic fraction, in posterior ones. Both fractions were strongly induced by decreasing salinity only in posterior gills. Perfusion of posterior gills from crabs acclimated to either 2 per thousand or 10 per thousand with acetazolamide inhibited CA activity almost completely. In posterior gills from crabs acclimated to 2 per thousand and perfused with 20 per thousand saline (iso-osmotic for these crabs), acetazolamide reduced transepithelial potential difference (V(te)) by 47%, further addition of ouabain enhanced the effect to 88%. Acetazolamide had no effect in the same gills perfused with 30 per thousand saline (iso-osmotic for seawater acclimated crabs). Bafilomycin A1 and SITS (inhibitors of V-H(+)-ATPase and Cl(-)/HCO3-) reduced V(te) by 15-16% in gills perfused with normal 20 per thousand saline, and by 77% and 45%, respectively when they were applied in Na-free 20 per thousand saline, suggesting the participation of those transporters and cytosolic CA in electrogenic ion absorption.  相似文献   

14.
15.
Carbonic anhydrase (CA) was identified by differential display PCR analysis as one of the differentially expressed genes in the gills of low salinity stressed (transferred from 25 to 3 ppt) Penaeusmonodon. To further characterize the role of CA in the regulation of salinity stress, the cDNA sequence of P.monodon carbonic anhydrase (PmCA) was attained by rapid amplification of cDNA ends and found to have a total length of 1194 bp. The deduced amino acid of PmCA shares 73% sequence identity with the CA homologue recently isolated from the crab, Callinectessapidus. Real time RT-PCR and enzymatic activity analyses were employed to determine the changes in the PmCA mRNA expression and total CA activity, respectively, after shrimps were transferred from 25 to 3 ppt salinities for up to 2 weeks. Compared to the CA level in the control group (25 ppt), PmCA mRNA was significantly increased in shrimp gills at 24 h after hypo-osmotic stress. In contrast, the epipodites and antennal gland displayed decreased levels of mRNA expression. The gross CA enzymatic activity after hypo-osmotic stress was increased in the shrimp gills but remained stable in the epipodites and antennal gland.  相似文献   

16.
Two CKM isoforms (CKM1 and CKM2) from the gills of tilapia (Oreochromis mossambicus) were obtained after transfer from freshwater (FW) to seawater (SW, 25 ppt). Based on the 5' and 3' RACE, the identity of CKM1 and CKM2 was determined to be 59% in the 5'-untranslated region (5'-UTR) and 41.9% in the 3'-UTR. Using Northern blot hybridization with the CKM1 and CKM2 3'-UTR probes, CKM1 and CKM2 were found to be expressed in muscle, heart and gill. The levels of these two different CK isoforms (CKM1 and CKM2) were shown to be different in FW than after acute SW transfer, showing that CKM isoforms respond to changes in salinity.  相似文献   

17.
Although carbonic anhydrase is a ubiquitous enzyme involved in a variety of physiological processes, the information on its evolution and cold adaptation among Antarctic fish is still limited: the only Antarctic fish carbonic anhydrase characterized up-to-date is from Chionodraco hamatus, a member of the Channichthyidae family. In this work, we characterized orthologous genes within two other fish families: Nototheniidae (Trematomus eulepidotus, Trematomus lepidorhinus, Trematomus bernacchii) and Bathydraconidae (Cygnodraco mawsoni). The cDNAs of epithelial gill carbonic anhydrases were cloned and sequenced. Both coding and deduced amino acid sequences were used in phylogenetic analyses. The group of enzymes preferentially expressed in fish erythrocytes (CAIIb) represented the most conserved variant. This result suggests that, although the two variants derived from the same ancestor, CAIIc genes have a more complex evolutionary history than CAIIb. The peculiar distribution of Antarctic CAs among fish CAIIcs suggests that the CAIIc gene appeared at different times through independent duplication events, even after the speciation that led to the differentiation of Antarctic fish families. Using the new CA sequences, we built homology models to trace the expected consequences of sequence variability at the protein structure level. From these analyses, we inferred that sequence variability in Antarctic fish CAs affect important physicochemical properties of these proteins and consequentially influence their reactivity. Furthermore, we searched and tested the validity of various potential molecular trademarks for cold adaptation: significant features that can be related to cold adaptation in fish CAs include reduction of positively charged solvent accessible surfaces and an increased flexibility of N-terminal and C-terminal regions.  相似文献   

18.
A chemical study of carbonic anhydrase (EC 4.2.1.1) from the red blood cells and the gills of an euryhaline fish (Anguilla anguilla) is presented. Animals adapted to fresh water were compared to those adapted to sea water. The physiochemical constants of the various molecular formsisolated by chromatography and isoelectric focusing were determined; isoelectric pH, molecular weight, and the Km and V/E of the enzyme dehydration activity were compared. In both red cells and gills of fish adapted in either media various forms were isolated, characterized by different enzymatic kinetics (high- and low- activity forms) but having the same molecular weight (27 250). Some isoenzymes isolated from the gills differed significantly from those isolated from the red cells. Adaptation to fresh water or sea water is accompanied by modifications in the distribution of the isoenzymes in both red cells and gills: adaptation to sea water is characterized by a shift of the molecular forms towards an isoelectric pH higher than pH equals 6. The role of these enzymes is discussed under both a physiological and biochemical point of view in relation to the electrolyte exchange across fish gill. The origin of the different molecular forms of the carbonic anhydrase is discussed in relation to the prevailing theories on this subject.  相似文献   

19.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

20.
The mouthpart setae of seven species of decapods were examined with macro-video recordings and scanning electron microscopy. The general mechanical (nonsensory) functions of the different mouthparts are described and an account of their setation is given. This offers the possibility to determine the mechanical functions of the different types of setae. Pappose setae do not participate in food handling but in general make setal barriers. Plumose setae likewise do not contact food objects but assist in current generation. Papposerrate setae are rare but they were seen to assist in pushing food particles into the mouth. Serrulate setae are very common and mainly participate in gentle food handling and grooming. Serrate setae are used for more rough food manipulation and grooming. The roughest shredding, tearing, and manipulation of prey items are handled by the cuspidate setae. Simple setae seem to be divided into two populations with very different functions. On the maxillipeds of Panulirus argus they are used for shredding, tearing, and holding the food objects, but on the basis of maxilla 2 of three other species they appear to have very little mechanical influence and only when handling small prey items. The functional scheme seems to be consistent within the Decapoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号