首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of studies in experimental animal models point to an important role of Fc gamma Rs in autoimmunity and allergy. In this study, we investigate how the production of IgG, an early step in the chain of events leading to inflammation, is regulated by activating and inhibitory Fc gamma Rs. IgG Abs are known to feedback-enhance Ab responses to soluble Ags, and this effect requires activating Fc gamma Rs. To test proliferation of Th cells, mice were adoptively transferred with CD4(+) T cells expressing a transgenic OVA-specific TCR before immunization with IgG2a anti-2,4,6-trinitrophenyl (TNP) plus OVA-TNP or with OVA-TNP alone. IgG2a induced a significant increase in OVA-specific T cell numbers, which preceded the OVA-specific Ab response and was dependent on the Fc gamma chain. The role of the inhibitory Fc gamma RIIB in Ab responses was studied in mice lacking this receptor. Although IgG2a enhanced primary Ab responses, development of germinal centers, and immunological memory in wild-type mice, enhancement was markedly stronger in Fc gamma RIIB(-/-) mice. The presented data are compatible with the hypothesis that the mechanism behind IgG2a-mediated up-regulation of Ab responses involves increased Ag presentation to CD4(+) T cells by Fc gamma R(+) APCs. Our observations also illustrate the intricate immunoregulatory role of IgG Abs. On the one hand, they enhance Ab responses via activating Fc gamma Rs, and on the other hand, they set an upper limit for the same Ab response via Fc gamma RIIB.  相似文献   

2.
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.  相似文献   

3.
Negative regulation of c-kit-mediated cell proliferation by Fc gamma RIIB   总被引:2,自引:0,他引:2  
Fc gamma RIIB are single-chain low-affinity receptors for IgG that bear an immunoreceptor tyrosine-based inhibition motif in their intracytoplasmic domain and that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They are widely expressed by cells of hematopoietic origin. We investigated here whether Fc gamma RIIB could also negatively regulate protein tyrosine kinase receptor (RTK)-dependent cell proliferation. As an experimental model, we used growth factor-dependent mast cells that constitutively express Fc gamma RIIB and c-kit, an RTK prototype. We found that anti-c-kit Abs mimicked the effect of stem cell factor and induced thymidine incorporation in Fc gamma RIIB-/-, but not in wild-type (wt) mast cells unless Fc gamma RIIB were blocked or anti-c-kit F(ab')2 were used. When coaggregated with c-kit by intact Abs in wt mast cells, Fc gamma RIIB inhibited thymidine incorporation, as well as cell proliferation, and inhibition was correlated with an arrest of cells in G1 during the cell cycle. The coaggregation of c-kit with Fc gamma RIIB did not affect ligand-induced c-kit phosphorylation and induced the tyrosyl-phosphorylation of Fc gamma RIIB, which selectively recruited the Src homology 2 domain-bearing inositol 5-phosphatase SHIP. Our results indicate that IgG Abs to growth factors or growth factor receptors may control RTK-dependent proliferation of a variety of cells that express Fc gamma RIIB.  相似文献   

4.
CD9, a member of the tetraspan family of proteins, is highly expressed on macrophages. Although a clear function for the molecule has yet to be described, we have found that the anti-CD9 mAb activates mouse macrophages. The rat anti-CD9 mAb, KMC8.8, but not the F(ab')(2), induced tyrosine phosphorylation of proteins including syk and cbl and induced cell aggregation in the mouse macrophage cell line, J774, suggesting that co-cross-linking of CD9 and Fc gamma R was required for the signal. Co-cross-linking of CD9-Fc gamma R with KMC8.8 on macrophages from three different FcR-deficient mice, FcR gamma-chain(-/-), Fc gamma RIIB(-/-), and Fc gamma RIII(-/-), revealed that Fc gamma RIII is specific and crucial for syk phosphorylation. Although both KMC8.8 and the anti-Fc gamma RIIB/III mAb, 2.4G2, evoked similar phosphorylation patterns, only KMC8.8 induced cell aggregation. Additionally, KMC8.8 treatment led to reduce levels of TNF-alpha production and p42/44 extracellular signal-related kinase phosphorylation relative to 2.4G2 stimulation. Immunofluorescence staining showed that co-cross-linking of CD9-Fc gamma R with KMC8.8 induced filopodium extension before cell aggregation, which was followed by simultaneous colocalization of CD9, Fc gamma RIIB/III, Mac-1, ICAM-1, and F-actin at the cell-cell adhesion site. Moreover, KMC8.8 treatment of Fc gamma R-deficient macrophages revealed that the colocalization of CD9, Fc gamma RIII, Mac-1, and F-actin requires co-cross-linking of CD9-Fc gamma RIII, whereas co-cross-linking of CD9-Fc gamma RIIB induced the colocalization of only CD9 and Fc gamma RIIB. Our results demonstrate that co-cross-linking of CD9 and Fc gamma Rs activates macrophages; therefore, CD9 may collaborate with FcRs functioning in infection and inflammation on macrophages.  相似文献   

5.
Fc gamma RIIB are IgG receptors that inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. Inhibition depends on an immunoreceptor tyrosine-based inhibition motif (ITIM) that is phosphorylated upon Fc gamma RIIB coaggregation with ITAM-bearing receptors and recruits SH2 domain-containing phosphatases. Agarose bead-coated phosphorylated ITIM peptides (pITIMs) bind in vitro the single-SH2 inositol 5-phosphatases (SHIP1 and SHIP2) and the two-SH2 protein tyrosine phosphatases (SHP-1 and SHP-2). Phosphorylated Fc gamma RIIB, however, recruit selectively SHIP1/2 in vivo. We aimed here at explaining this discordance. We found that beads coated with low amounts of pITIM bound in vitro SHIP1, but not SHP-1, i.e. behaved as phosphorylated Fc gamma RIIB in vivo. The reason is that SHP-1 requires its two SH2 domains to bind on adjacent pITIMs. Consequently, the binding of SHP-1, but not of SHIP1, increased with pITIM density on beads. When trying to increase Fc gamma RIIB phosphorylation in B cells and mast cells, we found that concentrations of ligands optimal for Fc gamma RIIB phosphorylation failed to induce SHP-1 recruitment. SHP-1 was, however, recruited by Fc gamma RIIB when hyperphosphorylated following cell treatment with pervanadate. Our data suggest that Fc gamma RIIB phosphorylation may not be sufficient in vivo to enable the recruitment of SHP-1 but that (pathological?) conditions that would hyperphosphorylate Fc gamma RIIB might enable SHP-1 recruitment.  相似文献   

6.
Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP. However, biologically significant interactions may be lost in such studies if reactants' dissociation rates (Kd) are high. Thus, it is unclear to what extent these assays reflect the relative recruitment of SHIP, SHP-1, and SHP-2 to the receptor in vivo. As an alternative approach to this question, we have studied the effects of ectopically expressed SHIP, SHP-1, or SHP-2 SH2-containing decoy proteins on Fc gamma RIIB1 signaling. Results demonstrate the SHIP is the predominant intracellular ligand for the phosphorylated Fc gamma RIIB1 ITIM, although the SHP-2 decoy exhibits some ability to bind Fc gamma RIIB1 and block Fc receptor function. The SHIP SH2, while not affecting Fc gamma RIIB1 tyrosyl phosphorylation, blocks receptor-mediated recruitment of SHIP, SHIP phosphorylation, recruitment of p52 Shc, phosphatidylinositol 3,4,5-trisphosphate hydrolysis, inhibition of mitogen-activated protein kinase activation, and, albeit more modestly, Fc gamma RIIB1 inhibition of Ca2+ mobilization. Taken together, results implicate ITIM interactions with SHIP as a major mechanism of Fc gamma RIIB1-mediated inhibitory signaling.  相似文献   

7.
One type of membrane microdomain, enriched in glycosphingolipids and cholesterol and referred to as lipid rafts, has been implicated in the generation of activating signals triggered by a variety of stimuli. Several laboratories, including ours, have recently demonstrated that the B cell receptor (BCR) inducibly localizes to the rafts upon activation and that functional lipid rafts are important for BCR-mediated "positive" signaling. In the later phases of the immune response, coligation of the BCR and the inhibitory receptor Fc gamma RIIB1 leads to potent inhibition of BCR-induced positive signaling through the recruitment of the inositol phosphatase SHIP to Fc gamma RIIB1. One potential model is that the Fc gamma RIIB1 itself might be excluded from the rafts basally and that destabilization of raft-dependent BCR signaling might be part of the mechanism for the Fc gamma RIIB1-mediated negative regulation. We tested this hypothesis and observed that preventing BCR raft localization is not the mechanism for this inhibition. Surprisingly, a fraction of Fc gamma RIIB1 is constitutively localized in the rafts and increases further after BCR + FcR coligation. SHIP is actively recruited to lipid rafts under negative stimulation conditions, and the majority of Fc gamma RIIB1-SHIP complexes localize to lipid rafts compared with non-raft regions of the plasma membrane. This suggested that this negative feedback loop is also initiated in the lipid rafts. Despite its basal localization to the rafts, Fc gamma RIIB1 did not become phosphorylated after BCR alone cross-linking and did not colocalize with the BCR that moves to rafts upon BCR engagement alone (positive signaling conditions), perhaps suggesting the existence of different subsets of rafts. Taken together, these data suggest that lipid rafts play a role in both the positive signaling via the BCR as well as the inhibitory signaling through Fc gamma RIIB1/SHIP.  相似文献   

8.
The tyrosine phosphorylation cascade originated from Fc gamma receptors (Fc gamma Rs) is essential for macrophage functions including phagocytosis. Although the initial step is ascribed to Src family tyrosine kinases, the role of individual kinases in phagocytosis signaling is still to be determined. In reconstitution experiments, we first showed that expression in the RAW 264.7 cell line of C-terminal Src kinase (Csk) inhibited and that of a membrane-anchored, gain-of-function Csk abolished the Fc gamma R-mediated signaling that leads to phagocytosis in a kinase-dependent manner. We next tested reconstruction of the signaling in the membrane-anchored, gain-of-function Csk-expressing cells by introducing Src family kinases the C-terminal negative regulatory sequence of which was replaced with a c-myc epitope. Those constructs derived from Lyn and Hck (a-Lyn and a-Hck) that associated with detergent-resistant membranes successfully reconstructed Fc gamma R-mediated Syk activation, filamentous actin rearrangement, and phagocytosis. In contrast, c-Src-derived construct (a-Src), that was excluded from detergent-resistant membranes, could not restore the series of phagocytosis signaling. Tyrosine phosphorylation of Vav and c-Cbl was restored in common by a-Lyn, a-Hck, and a-Src, but Fc gamma RIIB tyrosine phosphorylation, which is implicated in negative signaling, was reconstituted solely by a-Lyn and a-Hck. These findings suggest that Src family kinases are differentially involved in Fc gamma R-signaling and that selective kinases including Lyn and Hck are able to fully transduce phagocytotic signaling.  相似文献   

9.
In our previous paper, we reported that guinea pig splenic lymphocytes expressed two distinct Fc-receptors for homologous IgG (Fc gamma Rs), one monospecific for IgG2 (Fc gamma 2R) and the other bispecific for IgG1 and IgG2 (Fc gamma 1/gamma 2R), when analyzed by EA-rosette assay. These Fc gamma Rs on the cells were further studied by using two monoclonal antibodies toward the Fc gamma Rs on guinea pig peritoneal macrophages (anti-Fc gamma 1/gamma 2R and anti-Fc gamma 2R antibody). The anti-Fc gamma 1/gamma 2R antibody completely inhibited the rosette formation of splenic lymphocytes with IgG1-sensitized sheep erythrocytes [EA(IgG1)]. On the other hand, EA(IgG2)-rosette formation was inhibited partially by anti-Fc gamma 2R but not by anti-Fc gamma 1/gamma 2R antibody. Complete inhibition of the EA (IgG2)-rosette formation was achieved by simultaneous additions of both anti-Fc gamma 2R and anti-Fc gamma 1/gamma 2R antibodies. The binding of IgG2 antibody complexed with ovalbumin to the cells was partially inhibited by either anti-Fc gamma R antibody, and complete inhibition occurred in the presence of both the antibodies, indicating that two types of Fc gamma R, Fc gamma 1/gamma 2R, and Fc gamma 2R, are expressed on the cells. The determination of these Fc gamma Rs on B and T lymphocytes by two-color flow cytometry showed that about 52% of B lymphocytes expressed Fc gamma 1/gamma 2R alone and 32% of the cells expressed both the Fc gamma Rs. On the other hand, about 12% of T lymphocytes was found to express Fc gamma 2R alone and the cells expressing Fc gamma 1/gamma 2R were in the minority (3.8%). T lymphocytes expressing both the Fc gamma Rs were not detected. These results show that guinea pig B lymphocytes bear two types of Fc gamma Rs and are heterogeneous with regard to their Fc gamma Rs and that T lymphocytes express Fc gamma 2R mainly.  相似文献   

10.
The binding sites on human IgG1 for human Fc gamma receptor (Fc gamma R) I, Fc gamma RIIa, Fc gamma RIIb, Fc gamma RIIIa and neonatal FcR have been mapped. A common set of IgG1 residues is involved in binding to all Fc gamma Rs, while Fc gamma RII and Fc gamma RIII utilize distinct sites outside this common set. In addition to residues which abrogated binding to the Fc gamma R, several positions were found which improved binding only to specific Fc gamma Rs or simultaneously improved binding to one type of Fc gamma R and reduced binding to another type. Selected IgG1 variants with improved binding to Fc gamma RIIIa were then tested in an in vitro antibody-dependent cellular cytotoxicity (ADCC) assay and showed an enhancement in ADCC when either peripheral blood mononuclear cells or natural killer cells were used.  相似文献   

11.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

12.
FcγRIIB-deficient mice generated in 129 background (FcγRIIB(129)(-/-)) if back-crossed into C57BL/6 background exhibit a hyperactive phenotype and develop lethal lupus. Both in mice and humans, the Fcγr2b gene is located within a genomic interval on chromosome 1 associated with lupus susceptibility. In mice, the 129-derived haplotype of this interval, named Sle16, causes loss of self-tolerance in the context of the B6 genome, hampering the analysis of the specific contribution of FcγRIIB deficiency to the development of lupus in FcγRIIB(129)(-/-) mice. Moreover, in humans genetic linkage studies revealed contradictory results regarding the association of "loss of function" mutations in the Fcγr2b gene and susceptibility to systemic lupus erythematosis. In this study, we demonstrate that FcγRIIB(-/-) mice generated by gene targeting in B6-derived ES cells (FcγRIIB(B6)(-/-)), lacking the 129-derived flanking Sle16 region, exhibit a hyperactive phenotype but fail to develop lupus indicating that in FcγRIIB(129)(-/-) mice, not FcγRIIB deficiency but epistatic interactions between the C57BL/6 genome and the 129-derived Fcγr2b flanking region cause loss of tolerance. The contribution to the development of autoimmune disease by the resulting autoreactive B cells is amplified by the absence of FcγRIIB, culminating in lethal lupus. In the presence of the Yaa lupus-susceptibility locus, FcγRIIB(B6)(-/-) mice do develop lethal lupus, confirming that FcγRIIB deficiency only amplifies spontaneous autoimmunity determined by other loci.  相似文献   

13.
Isotype plays a crucial role in therapeutic monoclonal antibody (mAb) function, mediated in large part through differences in Fcγ receptor (FcγR) interaction. Monoclonal Abs such as rituximab and alemtuzumab, which bind target cells directly, are designed for efficient recruitment of immune effector cells through their activatory FcγR engagement to mediate maximal target cell killing. In this setting, binding to inhibitory FcγRIIB is thought to inhibit function, making mAbs with high activatory/inhibitory (A/I) FcγR binding ratios, such as mouse IgG2a and human IgG1, the first choice for this role. In contrast, exciting new data show that agonistic mAbs directed against the tumour necrosis factor receptor superfamily member CD40 require interaction with FcγRIIB for in vivo function. Such ligation activates antigen-presenting cells, promotes myeloid and CTL responses and potentially stimulates effective anti-cancer immunity. It appears that the role of FcγRIIB is to mediate mAb hyper-crosslinking to allow CD40 downstream intracellular signalling. Previous work has shown that mAbs directed against other TNFR family members, Fas and death receptor 5 and probably death receptor 4, also require FcγRIIB hyper-crosslinking to promote target cell apoptosis, suggesting a common mechanism of action. In mouse models, IgG1 is optimal for these agents as it binds to FcγRIIB with tenfold higher affinity than IgG2a and hence has a relatively low A:I FcγR binding ratio. In contrast, human IgG isotypes have a universally low affinity for FcγRIIB, but in the case of human IgG1, engineering the Fc to increase its affinity for FcγRIIB can potentially overcome this problem. Thus, modifying the A/I binding ratio of human IgG Fc can be used to optimise different types of therapeutic activity by enhancing cytotoxic or hyper-crosslinking function.  相似文献   

14.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

15.
Generation of the B cell recall response appears to involve interaction of Ag, in the form of an immune complex (IC) trapped on follicular dendritic cells (FDCs), with germinal center (GC) B cells. Thus, the expression of receptors on FDC and B cells that interact with ICs could be critical to the induction of an optimal recall response. FDCs in GCs, but not in primary follicles, express high levels of the IgG Fc receptor Fc gamma RIIB. This regulated expression of Fc gamma RIIB on FDC and its relation to recall Ab responses were examined both in vitro and in vivo. Trapping of IC in spleen and lymph nodes of Fc gamma RII-/- mice was significantly reduced compared with that in wild-type controls. Addition of ICs to cultures of Ag-specific T and B cells elicited pronounced Ab responses only in the presence of FDCs. However, FDCs derived from Fc gamma RIIB-/- mice supported only low level Ab production in this situation. Similarly, when Fc gamma RIIB-/- mice were transplanted with wild-type Ag-specific T and B cells and challenged with specific Ag, the recall responses were significantly depressed compared with those of controls with wild-type FDC. These results substantiate the hypothesis that FcgammaRIIB expression on FDCs in GCs is important for FDCs to retain ICs and to mediate the conversion of ICs to a highly immunogenic form and for the generation of strong recall responses.  相似文献   

16.
Effector Fc gamma receptors (FcγRs) are expressed on the surface of a variety of cells of hematopoietic lineage and serve as a bridge between adaptive and innate immune responses. The interaction between immune complexes, formed by IgG class antibodies that are crosslinked with antigen, and FcγRs triggers signaling cascades that result in numerous cellular responses including the activation or donwregulation of cytotoxic responses, cytokine release, and antibody synthesis. Here, the extracellular domains of the human type I transmembrane FcγRs were expressed in Escherichia coli and their interactions to subclass IgGs (IgG1, IgG2, IgG3, and IgG4) antibodies were analyzed. Expression using fully synthetic E. coli codon optimized FcγR genes and optimization of sequences for N‐terminal translation initiation region through mRNA secondary structure prediction enabled us to achieve high yield of purified, bacterially expressed receptors, including FcγRI and FcγRIIIa which have not been successfully expressed in bacteria until now. The aglycosylated FcγRs showed similar IgG subclass binding selectivity compared to the respective glycosylated FcγRs expressed in mammalian cells. Biotechnol. Bioeng. 2010;107: 21–30. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Murine Aim2 and Ifi202 genes (encoding for the Aim2 and p202 proteins) are members of the IFN-inducible Ifi200 gene family. The Aim2 deficiency in mice activates IFN signaling and stimulates the expression of the lupus susceptibility gene, the Ifi202, located within the NZB autoimmunity 2 (Nba2) interval. Given that the deficiency in the expression of the Fcgr2b gene (encoding for the inhibitory FcγRIIB receptor) is associated with increased lupus susceptibility in mice, we investigated whether the Aim2 protein could regulate the expression of Fcgr2b gene. In this article, we report that Aim2 deficiency in mice suppresses the expression of the FcγRIIB receptor. Interestingly, the Fcgr2b-deficient cells expressed increased levels of the IFN-β, activated IFN signaling, and expressed reduced levels of the Aim2 protein. Treatment of splenic cells with IFN-α or -γ reduced levels of the FcγRIIB mRNA and protein and also decreased the activity of the FcγRIIB p(-729/+585) Luc reporter. Moreover, levels of the FcγRIIB receptor were significantly higher in the Stat1-deficient splenic cells than in the wild-type cells. Accordingly, increased expression of IFN-β in lupus-prone B6.Nba2-ABC mice, as compared with non-lupus-prone C57BL/6 (B6) or B6.Nba2-C mice, was associated with reduced expression of the FcγRIIB receptor. Notably, overexpression of the p202 protein in cells decreased the expression of the Aim2 gene, activated the IFN response, and suppressed the expression of the Fcgr2b gene. These observations demonstrate that the expression of Aim2 protein is required to maintain the expression of the Fcgr2b gene and also predict epistatic interactions between the Ifi200 genes and the Fcgr2b gene within the Nba2 interval.  相似文献   

18.
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.  相似文献   

19.
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号