首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sauna ZE  Müller M  Peng XH  Ambudkar SV 《Biochemistry》2002,41(47):13989-14000
The human MDR1 (ABCB1) gene product, P-glycoprotein (Pgp), functions as an ATP-dependent efflux pump for a variety of chemotherapeutic drugs. In this study, we assessed the role of conserved glutamate residues in the Walker B domain of the two ATP sites (E556 and E1201, respectively) during the catalytic cycle of human Pgp. The mutant Pgps (E556Q, E556A, E1201Q, E1201A, E556/1201Q, and E556/1201A) were characterized using a vaccinia virus based expression system. Although steady-state ATP hydrolysis and drug transport activities were abrogated in both E556Q and E1201Q mutant Pgps, [alpha-(32)P]-8-azidoADP was trapped in the presence of vanadate (Vi), and the release of trapped [alpha-(32)P]-8-azidoADP occurred to a similar extent as in wild-type Pgp. This indicates that these mutations do not affect either the first hydrolysis event or the ADP release step. Similar results were also obtained when Glu residues were replaced with Ala (E556A and E1201A). Following the first hydrolysis event and release of [alpha-(32)P]-8-azidoADP, both E556Q and E1201Q mutant Pgps failed to undergo another cycle of Vi-induced [alpha-(32)P]-8-azidoADP trapping. Interestingly, the double mutants E556/1201Q and E556/1201A trapped [alpha-(32)P]-8-azidoADP even in the absence of Vi, and the occluded nucleotide was not released after incubation at 37 degrees C for an extended period. In addition, the properties of transition state conformation of the double mutants generated in the absence of Vi were found to be similar to that of the wild-type protein trapped in the presence of Vi (Pgp x [alpha-(32)P]-8-azidoADP xVi). Thus, in contrast to the single mutants, the double mutants appear to be defective in the ADP release step. In aggregate, these data suggest that E556 and E1201 residues in the Walker B domains may not be critical as catalytic carboxylates for the cleavage of the bond between the gamma-P and the beta-P of ATP during hydrolysis but are essential for the second ATP hydrolysis step and completion of the catalytic cycle.  相似文献   

2.
We found recently that the combined mutation of both "catalytic carboxylate" residues (E552A/E1197A) in mouse P-glycoprotein (Pgp) arrested the protein in an "occluded nucleotide conformation", possibly a stabilized dimer of nucleotide-binding domains (NBDs), that binds MgATP tightly at stoichiometry of 1 mol/mol Pgp [Tombline, G., Bartholomew, L., Urbatsch, I. L., and Senior, A. E. (2004) J. Biol. Chem. 279, 31212-31220]. Here, we further examine this conformation in respect to its potential involvement in the catalytic pathway. The occluded nucleotide conformation is promoted by drugs. Verapamil markedly accelerated the rate of tight binding of MgATP, whereas it did not effect the rate of dissociation. Mutations in "Q-loop" residues that are thought to interfere with communication between drug and catalytic sites prevented the occluded nucleotide conformation, as did covalent reagents N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, which are known to inhibit ATP hydrolysis by reacting in catalytic sites. Mutations of Walker A Ser and Lys residues in combination with E552A/E1197A had the same effect, showing that interaction of these conserved residues with MgATP is required to stabilize the occluded nucleotide conformation. We present an enzymatic scheme that incorporates this conformation. We propose that upon initial loose binding of MgATP at two nucleotide-binding domains (NBDs), together with drug binding, the NBDs dimerize to form the occluded conformation, with one tightly bound MgATP committed to hydrolysis. The pathway progresses such that the tightly bound MgATP enters the transition state and is hydrolyzed. This work suggests that small molecules or peptides that interact at the NBD dimer interface might effectively disable Pgp catalysis.  相似文献   

3.
Combined mutation of "catalytic carboxylates" in both nucleotide binding domains (NBDs) of P-glycoprotein generates a conformation capable of tight binding of 8-azido-ADP (Sauna, Z. E., Müller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry 41, 13989-14000). Here we characterized this conformation using pure mouse MDR3 P-glycoprotein and natural MgATP and MgADP. Mutants E552A/E1197A, E552Q/E1197Q, E552D/E1197D, and E552K/E1197K had low but real ATPase activity in the order Ala > Gln > Asp > Lys, emphasizing the requirement for Glu stereochemistry. Mutant E552A/E1197A bound MgATP and MgADP (1 mol/mol) with K(d) 9.2 and 92 microm, showed strong temperature sensitivity of MgATP binding and equal dissociation rates for MgATP and MgADP. With MgATP as the added ligand, 80% of bound nucleotide was in the form of ATP. None of these parameters was vanadate-sensitive. The other mutants showed lower stoichiometry of MgATP and MgADP binding, in the order Ala > Gln > Asp > Lys. We conclude that the E552A/E1197A mutation arrests the enzyme in a conformation, likely a stabilized NBD dimer, which occludes nucleotide, shows preferential binding of ATP, does not progress to a normal vanadate-sensitive transition state, but hydrolyzes ATP and releases ADP slowly. Impairment of turnover is primarily due to inability to form the normal transition state rather than to slow ADP release. The Gln, Asp, and Lys mutants are less effective at stabilizing the occluded nucleotide, putative dimeric NBD, conformation. We envisage that in wild-type the occluded nucleotide conformation occurs transiently after MgATP binds to both NBDs with associated dimerization, and before progression to the transition state.  相似文献   

4.
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.  相似文献   

5.
The nucleotide binding domains (NBDs) are the energy supplying subunits of ATP-binding cassette (ABC) proteins. They power transport by binding and hydrolyzing ATP. Tracing the pathway between different conformational states of the NBDs during ATP binding, hydrolysis, and release has, however, proven difficult. We have used molecular dynamics simulations to study the ATP-driven association of the NBDs of the maltose ABC transporter, MalK, based on the crystal structures of its open and semiopen dimers. When MgATP was introduced into the binding pockets, the semiopen dimer transitioned to a closed conformation, whereas the open dimer evolved to a semiopen state. In the absence of docked MgATP, however, the twin NBDs of both the open and semiopen starting configurations drifted further apart. Both the presence of MgATP and direct cross-interface protein-protein hydrogen bonds, primarily involving the D-loop, quite likely play a key role in initiating closure. The simulations of the MgATP-docked semiopen form indicate that completion of closure is driven mainly by cross-interface contacts between the gamma-phosphate of ATP and residues in the signature motif. Our simulations also give insight into possible interactions of MalK with the regulatory proteins MalT and enzyme IIA(glc).  相似文献   

6.
We review recent work on E552A/E1197A P-glycoprotein. This ATPase-defective mutant occludes MgATP tightly with maximal 1/1 stoichiometry in drug-sensitive fashion. The occluded nucleotide conformation appears to represent a transient, asymmetric, catalytic intermediate. We present a model for catalysis incorporating nucleotide binding domain (NBD) dimerization and the occluded nucleotide conformation, and we speculate as to how catalysis seen in P-glycoprotein might be harmonized with symmetrical dimer structures of isolated NBDs.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase-dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing.  相似文献   

8.
The chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) displays a typical adenosine trisphosphate (ATP)-binding cassette (ABC) protein architecture comprising two transmembrane domains, two intracellular nucleotide-binding domains (NBDs), and a unique intracellular regulatory domain. Once phosphorylated in the regulatory domain, CFTR channels can open and close when supplied with cytosolic ATP. Despite the general agreement that formation of a head-to-tail NBD dimer drives the opening of the chloride ion pore, little is known about how ATP binding to individual NBDs promotes subsequent formation of this stable dimer. Structural studies on isolated NBDs suggest that ATP binding induces an intra-domain conformational change termed “induced fit,” which is required for subsequent dimerization. We investigated the allosteric interaction between three residues within NBD2 of CFTR, F1296, N1303, and R1358, because statistical coupling analysis suggests coevolution of these positions, and because in crystal structures of ABC domains, interactions between these positions appear to be modulated by ATP binding. We expressed wild-type as well as F1296S, N1303Q, and R1358A mutant CFTR in Xenopus oocytes and studied these channels using macroscopic inside-out patch recordings. Thermodynamic mutant cycles were built on several kinetic parameters that characterize individual steps in the gating cycle, such as apparent affinities for ATP, open probabilities in the absence of ATP, open probabilities in saturating ATP in a mutant background (K1250R), which precludes ATP hydrolysis, as well as the rates of nonhydrolytic closure. Our results suggest state-dependent changes in coupling between two of the three positions (1296 and 1303) and are consistent with a model that assumes a toggle switch–like interaction pattern during the intra-NBD2 induced fit in response to ATP binding. Stabilizing interactions of F1296 and N1303 present before ATP binding are replaced by a single F1296-N1303 contact in ATP-bound states, with similar interaction partner toggling occurring during the much rarer ATP-independent spontaneous openings.  相似文献   

9.
Loo TW  Bartlett MC  Clarke DM 《Biochemistry》2007,46(32):9328-9336
P-Glycoprotein (P-gp, ABCB1) transports a variety of structurally unrelated cytotoxic compounds out of the cell. Each homologous half of P-gp has a transmembrane (TM) domain containing six TM segments and a nucleotide-binding domain (NBD) and is joined by a linker region. It has been postulated that binding of two ATP molecules at the NBD interface to form a "nucleotide sandwich" induces drug efflux by altering packing of the TM segments that make up the drug-binding pocket. To test if ATP binding alone could alter packing of the TM segments, we introduced catalytic carboxylate mutations (E556Q in NBD1 and E1201Q in NBD2) into double-cysteine mutants that exhibited ATP-dependent cross-linking so that the mutants could bind but not hydrolyze ATP. It was found that ATP binding alone could alter disulfide cross-linking between the TM segments. For example, ATP inhibited cross-linking of mutant L339C(TM6)/V982C(TM12)/E556Q(NBD1)/E1201Q(NBD2) but promoted cross-linking of mutant F343C(TM6)/V982C(TM12)/E556Q(NBD1)/E1201Q(NBD2). Cross-linking of some mutants, however, appeared to require ATP hydrolysis as introduction of the catalytic carboxylate mutations into mutant L332C(TM6)/L975C(TM12) inhibited ATP-dependent cross-linking. Cross-linking between cysteines in the TM segments also could be altered via introduction of a single catalytic carboxylate mutation into mutant L332C(TM6)/L975C(TM12) or by using the nonhydrolyzable ATP analogue, AMP.PNP. The results show that the TM segments are quite sensitive to changes within the ATP-binding sites because different conformations could be detected in the presence of ATP, AMP.PNP, during ATP hydrolysis or through mutation of the catalytic carboxylates.  相似文献   

10.
We have recently proposed a "processive clamp" model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.  相似文献   

11.
P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (~?42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.  相似文献   

12.
Campbell JD  Sansom MS 《FEBS letters》2005,579(19):4193-4199
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.  相似文献   

13.
ATP binding cassette (ABC) transporters have a functional unit formed by two transmembrane domains and two nucleotide binding domains (NBDs). ATP-bound NBDs dimerize in a head-to-tail arrangement, with two nucleotides sandwiched at the dimer interface. Both NBDs contribute residues to each of the two nucleotide-binding sites (NBSs) in the dimer. In previous studies, we showed that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii forms ATP-bound dimers that dissociate completely following hydrolysis of one of the two bound ATP molecules. Since hydrolysis of ATP at one NBS is sufficient to drive dimer dissociation, it is unclear why all ABC proteins contain two NBSs. Here, we used luminescence resonance energy transfer (LRET) to study ATP-induced formation of NBD homodimers containing two NBSs competent for ATP binding, and NBD heterodimers with one active NBS and one binding-defective NBS. The results showed that binding of two ATP molecules is necessary for NBD dimerization. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dissociation, but two binding sites are required to form the ATP-sandwich NBD dimer necessary for hydrolysis.  相似文献   

14.
The transport cycle of ABC transporters in general and P-glycoprotein in particular has been extensively studied, but the molecular mechanism remains controversial. We identify stable reaction intermediates in the progression of the P-glycoprotein-mediated ATPase reaction equivalent to the enzyme-substrate (E.S, P-glycoprotein.ATP) and enzyme-product (E.P, P-glycoprotein.ADP.P(i)) reaction intermediates. These have been characterized using the photoaffinity analog 8-azido-[alpha-32P]ATP as well as under equilibrium conditions using [alpha-32P]ATP, in which a cross-linking step is not involved. Similar results were obtained when 8-azido-[alpha-32P]ATP or [alpha-32P]ATP was used. The reaction intermediates were characterized based on their kinetic properties and the nature (triphosphate/diphosphate) of the trapped nucleotide. Using this defined framework and the Walker B E556Q/E1201Q mutant that traps nucleotide in the absence of vanadate or beryllium fluoride, the high to low affinity switch in the transport substrate binding site can be attributed to the formation of the E.S reaction intermediate of the ATPase reaction. Importantly, the posthydrolysis E.P state continues to have low affinity for substrate, suggesting that conformational changes that form the E.S complex are coupled to the conformational change at the transport substrate site to do mechanical work. Thus, the formation of E.S reaction intermediate during a single turnover of the catalytic cycle appears to provide the initial power stroke for movement of drug substrate from inner leaflet to outer leaflet of lipid bilayer. This novel approach applies transition state theory to elucidate the mechanism of P-glycoprotein and other ABC transporters and has wider applications in testing cause-effect hypotheses in coupled systems.  相似文献   

15.
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.  相似文献   

16.
Carrier I  Julien M  Gros P 《Biochemistry》2003,42(44):12875-12885
In the nucleotide-binding domains (NBDs) of ABC transporters, such as mouse Mdr3 P-glycoprotein (P-gp), an invariant carboxylate residue (E552 in NBD1; E1197 in NBD2) immediately follows the Walker B motif (hyd(4)DE/D). Removal of the negative charge in mutants E552Q and E1197Q abolishes drug-stimulated ATPase activity measured by P(i) release. Surprisingly, drug-stimulated trapping of 8-azido-[alpha-(32)P]ATP is still observed in the mutants in both the presence and absence of the transition-state analogue vanadate (V(i)), and ADP can be recovered from the trapped enzymes. The E552Q and E1197Q mutants show characteristics similar to those of the wild-type (WT) enzyme with respect to 8-azido-[alpha-(32)P]ATP binding and 8-azido-[alpha-(32)P]nucleotide trapping, with the latter being both Mg(2+) and temperature dependent. Importantly, drug-stimulated nucleotide trapping in E552Q is stimulated by V(i) and resembles the WT enzyme, while it is almost completely V(i) insensitive in E1197Q. Similar nucleotide trapping properties are observed when aluminum fluoride or beryllium fluoride is used as an alternate transition-state analogue. Partial proteolytic cleavage of photolabeled enzymes indicates that, in the absence of V(i), nucleotide trapping occurs exclusively at the mutant NBD, whereas in the presence of V(i), nucleotide trapping occurs at both NBDs. Together, these results suggest that there is single-site turnover occurring in the E552Q and E1197Q mutants and that ADP release from the mutant site, or another catalytic step, is impaired in these mutants. Furthermore, our results support a model in which the two NBDs of P-gp are not functionally equivalent.  相似文献   

17.
囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道   总被引:1,自引:1,他引:0  
Bompadre SG  Hwang TC 《生理学报》2007,59(4):431-442
囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)是一种Cl^-通道,属于ATP结合(ATP-binding cassette,ABC)转运体超家族。CFTR功能缺陷是高加索人种中普遍存在的致死性常染色体隐性遗传疾病囊性纤维化(cystic fibrosis,CF)发生的主要原因。这种疾病患者各组织上皮细胞内Cl^-转运失调。目前,与CF相关的不同突变超过1400种。CFTR调节(regulatory,R)域负责调控,核苷酸结合域(nucleotide-binding domains,NBDs)NBD1和NBD2负责ATP结合和水解门控。近期研究发现CFFR的NBDs与其它ABC蛋白一样可以二聚化。二聚化过程中,NBD1和NBD2首-尾相连,一个NBD上的WalkerA和B模块与另一个NBD提供的标签序列(signature sequence)形成ATP结合袋(ATP-binding pockets,ABPs)ABP1和ABP2。ABPs中与ATP结合相关的氨基酸突变实验揭示,ABP1和ABP2在CFTR的ATP依赖门控中发挥不同作用。ABP2由NBD2上的WalkA和B模块与NBD1提供的标签序列形成,它与ATP结合催化通道开放,而ABP1单独与ATP结合不能促进通道开放,只能稳定通道构象。有一些CFrR突变相关疾病的特征就是门控失调,进一步深入研究CFTR的NBD1和NBD2如何通过相互作用而达到通道门控,将为药理学研究提供更多所需的机制信息,有利于为CF治疗的药物设计铺平道路。  相似文献   

18.
It has been proposed that the reaction cycle of ATP binding cassette (ABC) transporters is driven by dimerization of their ABC motor domains upon binding ATP at their mutual interface. However, no such ATP sandwich complex has been observed for an ABC from an ABC transporter. In this paper, we report the crystal structure of a stable dimer formed by the E171Q mutant of the MJ0796 ABC, which is hydrolytically inactive due to mutation of the catalytic base. The structure shows a symmetrical dimer in which two ATP molecules are each sandwiched between the Walker A motif in one subunit and the LSGGQ signature motif in the other subunit. These results establish the stereochemical basis of the power stroke of ABC transporter pumps.  相似文献   

19.
P-glycoprotein (Pgp) is a plasma membrane protein whose overexpression confers multidrug resistance to tumor cells by extruding amphipathic natural product cytotoxic drugs using the energy of ATP. An elucidation of the catalytic cycle of Pgp would help design rational strategies to combat multidrug resistance and to further our understanding of the mechanism of ATP-binding cassette transporters. We have recently reported (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520) that there are two independent ATP hydrolysis events in a single catalytic cycle of Pgp. In this study we exploit the vanadate (Vi)-induced transition state conformation of Pgp (Pgp.ADP.Vi) to address the question of what are the effects of ATP hydrolysis on the nucleotide-binding site. We find that at the end of the first hydrolysis event there is a drastic decrease in the affinity of nucleotide for Pgp coincident with decreased substrate binding. Release of occluded dinucleotide is adequate for the next hydrolysis event to occur but is not sufficient for the recovery of substrate binding. Whereas the two hydrolysis events have different functional outcomes vis à vis the substrate, they show comparable t(12) for both incorporation and release of nucleotide, and the affinities for [alpha-(32)P]8-azido-ATP during Vi-induced trapping are identical. In addition, the incorporation of [alpha-(32)P]8-azido-ADP in two ATP sites during both hydrolysis events is also similar. These data demonstrate that during individual hydrolysis events, the ATP sites are recruited in a random manner, and only one site is utilized at any given time because of the conformational change in the catalytic site that drastically reduces the affinity of the second ATP site for nucleotide binding. In aggregate, these findings provide an explanation for the alternate catalysis of ATP hydrolysis and offer a mechanistic framework to elucidate events at both the substrate- and nucleotide-binding sites in the catalytic cycle of Pgp.  相似文献   

20.
ABC transporters play important roles in all types of organisms by participating in physiological and pathological processes. In order to modulate the function of ABC transporters, detailed knowledge regarding their structure and dynamics is necessary. Available structures of ABC proteins indicate three major conformations, a nucleotide-bound "bottom-closed" state with the two nucleotide binding domains (NBDs) tightly closed, and two nucleotide-free conformations, the "bottom-closed" and the "bottom-open", which differ in the extent of separation of the NBDs. However, it remains a question how the widely open conformation should be interpreted, and whether hydrolysis at one of the sites can drive conformational transitions while the NBDs remain in contact. To extend our knowledge, we have investigated the dynamic properties of the Sav1866 transporter using molecular dynamics (MD) simulations. We demonstrate that the replacement of one ATP by ADP alters the correlated motion patterns of the NBDs and the transmembrane domains (TMD). The results suggest that the hydrolysis of a single nucleotide could lead to extracellular closure, driving the transport cycle. Essential dynamics analysis of simulations suggests that single nucleotide hydrolysis can drive the system toward a "bottom-closed" apo conformation similar to that observed in the structure of the MsbA transporter. We also found significant structural instability of the "bottom-open" form of the transporters in simulations. Our results suggest that ATP hydrolysis at one of the sites promotes transport related conformational changes leading to the "bottom-closed" apo conformation, which could thus be physiologically more relevant for describing the structure of the apo state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号