首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recorded (13)C NMR spectra of the [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis transducer pHtrII(1-159) in the presence and absence of phoborhodopsin (ppR or sensory rhodopsin II) in egg phosphatidylcholine or dimyristoylphosphatidylcholine bilayers by means of site-directed (amino acid specific) solid-state NMR. Two kinds of (13)C NMR signals of [3-(13)C]Ala-pHtrII complexed with ppR were clearly seen with dipolar decoupled magic angle spinning (DD-MAS) NMR. One of these resonances was at the peak position of the low-field alpha-helical peaks (alpha(II)-helix) and is identified with cytoplasmic alpha-helices protruding from the bilayers; the other was the high-field alpha-helical peak (alpha(I)-helix) and is identified with the transmembrane alpha-helices. The first peaks, however, were almost completely suppressed by cross-polarization magic angle spinning (CP-MAS) regardless of the presence or absence of ppR or by DD-MAS NMR in the absence of ppR. This is caused by an increased fluctuation frequency of the cytoplasmic alpha-helix from 10(5) Hz in the uncomplexed states to >10(6) Hz in the complexed states, leading to the appearance of peaks that were suppressed because of the interference of the fluctuation frequency with the frequency of proton decoupling (10(5) Hz), as viewed from the (13)C NMR spectra of [3-(13)C]Ala-labeled pHtrII. Consistent with this view, the (13)C DD-MAS NMR signals of the cytoplasmic alpha-helices of the complexed [3-(13)C]Ala-pHtrII in the dimyristoylphosphatidylcholine (DMPC) bilayer were partially suppressed at 0 degrees C due to a decreased fluctuation frequency at the low temperature. In contrast, examination of the (13)C CP-MAS spectra of [1-(13)C]Val-labeled complexed pHtrII showed that the (13)C NMR signals of the transmembrane alpha-helix were substantially suppressed. These spectral changes are again interpreted in terms of the increased fluctuation frequency of the transmembrane alpha-helices from 10(3) Hz of the uncomplexed states to 10(4) Hz of the complexed states. These findings substantiate the view that the transducers alone are in an aggregated or clustered state but the ppR-pHtrII complex is not aggregated. We show that (13)C NMR is a very useful tool for achieving a better understanding of membrane proteins which will serve to clarify the molecular mechanism of signal transduction in this system.  相似文献   

2.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane alpha-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 10(4)-10(5) Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 degrees C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

3.
13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.  相似文献   

4.
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

5.
We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation times in the laboratory frame and spin-spin relaxation times under the conditions of cross-polarization-magic angle spinning, and comparative study of suppressed specific peaks between the CP-MAS and DD-MAS experiments.  相似文献   

6.
We compared (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacterio-opsin (bO), produced either by bleaching bR with hydroxylamine or from a retinal-deficient strain, with those of bacteriorhodopsin (bR), in order to gain insight into the conformational changes of the protein backbone that lead to correct folding after retinal is added to bO. The observed (13)C NMR spectrum of bO produced by bleaching is not greatly different from that of bR, except for the presence of suppressed or decreased peak-intensities. From careful evaluation of the intensity differences between cross polarization magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) spectra, it appears that the reduced peak-intensities arise from reduced efficiency of cross polarization or interference of internal motions with proton decoupling frequencies. In particular, the E-F and F-G loops and some transmembrane helices of the bleached bO have acquired internal motions whose frequencies interfere with proton decoupling frequencies. In contrast, the protein backbone of the bO from the retinal-negative cells is incompletely folded. Although it contains mainly a-helices, its very broad (13)C NMR signals indicate that its tertiary structure is different from bR. Importantly, this changed structure is identical in form to that of bleached bO from wild-type bR after it was regenerated with retinal in vitro, and bleached with hydroxylamine. We conclude that the binding of retinal is essential for the correct folding of bR after it is inserted in vitro into the lipid bilayer, and the final folded state does not revert to the partially folded form upon removal of the retinal.  相似文献   

7.
We have recorded (13)C nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis phoborhodopsin (ppR or sensory rhodopsin II) incorporated into egg PC (phosphatidylcholine) bilayer, by means of site-directed high-resolution solid-state NMR techniques. Seven (13)C NMR signals from transmembrane alpha-helices were resolved for [3-(13)C]Ala-ppR at almost the same positions as those of bacteriorhodopsin (bR), except for the suppressed peaks in the loop regions in spite of the presence of at least three Ala residues. In contrast, (13)C NMR signals from the loops were visible from [1-(13)C]Val-ppR but their peak positions of the transmembrane alpha-helices are not always the same between ppR and bR. The motional frequency of the loop regions in ppR was estimated as 10(5) Hz in view of the suppressed peaks from [3-(13)C]Ala-ppR due to interference with proton decoupling frequency. We found that conformation and dynamics of ppR were appreciably altered by complex formation with a cognate truncated transducer pHtr II (1-159). In particular, the C-terminal alpha-helix protruding from the membrane surface is involved in the complex formation and subsequent fluctuation frequency is reduced by one order of magnitude.  相似文献   

8.
We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacteriorhodopsin (bR) and a variety of its mutants, E9Q, E74Q, E194Q/E204Q (2Glu), E9Q/E194Q/E204Q (3Glu), and E9Q/E74Q/E194Q/E204Q (4Glu), to clarify contributions of the extracellular (EC) Glu residues to the conformation and dynamics of bR. Replacement of Glu-9 or Glu-74 and Glu-194/204 at the EC surface by glutamine(s) induced significant conformational changes in the cytoplasmic (CP) surface structure. These changes occurred in the C-terminal alpha-helix and loops, and also those of the EC surface, as viewed from (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled proteins. Additional conformational changes in the transmembrane alpha-helices were induced as modified retinal-protein interactions for multiple mutants involving the E194Q/E204Q pair. Significant dynamic changes were induced for the triple or quadruple mutants, as shown by broadened (13)C NMR peaks of [1-(13)C]Val-labeled proteins. These changes were due to acquired global fluctuation motions of the order of 10(-4)-10(-5) s as a result of disorganized trimeric form. In such mutants (13)C NMR signals from Val residues of [1-(13)C]Val-labeled triple and quadruple mutants near the CP and EC surfaces (including 8.7-A depth from the surface) were substantially suppressed, as shown by comparative (13)C NMR studies with and without 40 micro M Mn(2+) ion. We conclude that these Glu residues at the EC surface play an important role in maintaining the native secondary structure of bR in the purple membrane.  相似文献   

9.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

10.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane α-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 104-105 Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 °C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

11.
13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane αII-helices. Surprisingly, the 13C NMR spectra of [3-13C]Ala-D85N turned out to be very similar to those of [3-13C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane αII-helices of the M-like state are suppressed already by fluctuation motions in the order of 104-105 Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic α-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane α-helices followed by Pro residues in [1-13C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-13C]Val and [3-13C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

12.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

13.
[5,8-13C2]Spermidine was prepared by synthesis, and its binding to macromolecular structures of Escherichia coli was studied. When added to E. coli cells, the two signals of [13C]spermidine (C-5, 47.8 ppm, and C-8, 39.6 ppm; JC-C = 5.8 Hz) were strongly broadened due to binding to macromolecules. When [13C]spermidine was added to E. coli tRNA, the C-5 resonance broadened to v1/2 = 4.7 Hz, whereas the C-8 resonance broadened to v1/2 = 2.7 Hz. tRNA-bound [13C]spermidine could be chased by [12C]spermidine or spermine, but not by putrescine or cadaverine. By using mixtures of [5-13C]- and [8-13C]spermidines (where 13C-13C coupling was avoided), it was possible to estimate a dissociation constant (Kd) of 3 x 10(-3) M using the C-5 v1/2obs values and a Kd of 2.10(-3) M using the C-8 v1/2obs values. The number of spermidine-binding sites (n) could also be estimated by fitting the bound spermidine molar fraction versus tRNA concentration. Values of n = 12 +/- 2 and 14 +/- 3 were obtained for C-5 and C-8, respectively. Measurements of line narrowing at increasing Mg2+ concentrations indicated that approximately 11 spermidines (of the 12-14 bound ones) could be displaced by the former, whereas 3 spermidines remain strongly bound to the tRNA backbone. Measurements of free and bound T1 allowed the determination of a correlation time of 10(-10)s for tRNA-bound spermidine.  相似文献   

14.
According to previous X-ray diffraction studies, the D85N mutant of bacteriorhodopsin (bR) with unprotonated Schiff base assumes a protein conformation similar to that in the M photointermediate. We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N and D85N/D96N mutants at ambient temperature to examine how conformation and dynamics of the protein backbone are altered when the Schiff base is protonated (at pH 7) and unprotonated (at pH 10). Most notably, we found that the peak intensities of three to four [3-(13)C]Ala-labeled residues from the transmembrane alpha-helices, including Ala 39, 51, and 53 (helix B) and 215 (helix G), were suppressed in D85N and D85N/D96N both from CP-MAS (cross polarization-magic angle spinning) and DD-MAS (dipolar decoupled-magic angle spinning) spectra, irrespective of the pH. This is due to conformational change and subsequent acquisition of intermediate time-range motions, with correlation times in the order of 10(-)(5) or 10(-)(4) s, which interferes with proton decoupling frequency or frequency of magic angle spinning, respectively, essential for an attempted peak-narrowing to achieve high-resolution NMR signals. Greater changes were achieved, however, at pH 10, which indicate large-amplitude motions of transmembrane helices upon deprotonation of Schiff base and the formation of the M-like state in the absence of illumination. The spectra detected more rapid motions in the extracellular and/or cytoplasmic loops, with correlation times increasing from 10(-)(4) to 10(-)(5) s. Conformational changes in the transmembrane helices were located at helices B, G, and D as viewed from the above-mentioned spectral changes, as well as at 1-(13)C-labeled Val 49 (helix B), 69 (B-C loop), and [3-(13)C]Ala-labeled Ala 126 (D-helix) signals, in addition to the cytoplasmic and extracellular loops. Further, we found that in the M-like state the charged state of Asp 96 at the cytoplasmic side substantially modulated the conformation and dynamics of the extracellular region through long-distance interaction.  相似文献   

15.
Malaisse WJ  Willem R 《Biochimie》2004,86(2):119-125
When liver cells from either normal or hereditarily diabetic rats are exposed to (13)C-enriched D-fructose (10 mM) and unlabelled D-glucose (also 10 mM) in the presence of D(2)O, the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose is significantly lower than that from D-[2-(13)C]fructose. This coincides with a higher generation of (13)C-enriched L-lactate and L-alanine from D-[1-(13)C]fructose, as compared to D-[2-(13)C]fructose. In absolute terms, the mean paired difference in the output of (13)C-enriched D-glucose generated from D-[1-(13)C]fructose versus D-[2-(13)C]fructose is not significantly different from the mean paired difference in the production of (13)C-enriched L-lactate and L-alanine from the same precursors, with an overall mean value of 7.01 +/- 1.59 micromol (n = 8; P < 0.005). It is proposed that these findings indicate isotopic discrimination at the phosphoglucoisomerase level between (12)C and (13)C for the carbon atom in position 1 (as compared to that in position 2) of D-fructose 6-phosphate.  相似文献   

16.
A combined chemical and enzymatic synthesis of [8(-13)C]guanosine 5'-diphosphate (GDP) from H13COOH is described. About 35 mg nucleotide was obtained from 500 mg H13COOH. Analysis of the [8(-13)C]GDP by negative ion fast atom bombardment mass spectrometry and by 13C NMR confirmed that one atom of 13C was incorporated at the 8-position of the guanine ring at 90 +/- 10% enrichment. The chemical shift of the C(8) was 140.2 ppm downfield from internal trimethylsilylpropionate at neutral pH and room temperature, with a spin-spin coupling 1J(13C(8)-H(8] of 217 Hz and a 3J(13C(8)-H(1'] of 3.9 Hz.  相似文献   

17.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

18.
G Zomer  H Wynberg  N M Drayer 《Steroids》1984,44(4):283-292
The preparation of [1,2,3,4-13C] testosterone and of [1,2,3,4-13C] estradiol by total synthesis is described. The 13C labels are introduced by alkylating intermediate 1 with [1,2,3,4-13C]l-iodo-3,3-ethylenedioxybutane (2) to obtain intermediate 10. Hydrolysis of the ketal function, cyclization, aromatization and removal of protective groups gave [1,2,3,4-13C] estradiol. Labeled testosterone was prepared by methylating intermediate 10 and by subsequent treatment with acid. The labeled steroids can be used as tracers for in vivo metabolic studies and as internal standards for the development of definitive gc-ms quantitative methods.  相似文献   

19.
Several grams of labelled trans linoleic and linolenic acids with high chemical and isomeric purities (>97%) have been prepared for human metabolism studies. A total of 12.5 g of (9Z, 12E)-[1-(13)C]-octadeca-9,12-dienoic acid and 6.3 g of (9Z,12Z, 15E)-[1-(13)C]-octadeca-9,12,15-trienoic acid were obtained in, respectively, seven steps (7.8% overall yield) and 11 steps (7% overall yield) from 7-bromo-heptan-1-ol. The trans bromo precursors used for the labelling were synthesised by using copper-catalysed couplings. The trans fatty acids were then obtained via the nitrile derivatives. A total of 23.5 g of (9Z,12Z)-[1-(13)C]-octadeca-9, 12-dienoic acid and 10.4 g of (9Z,12Z,15Z)-[1-(13)C]-octadeca-9,12, 15-trienoic acid were prepared in five steps in, respectively, 32 and 18% overall yield. Large quantities of bromo and chloro precursors were synthesised from the commercially available acid according to Barton's procedure. In all cases, the main impurities (>0.5%) of each labelled fatty acid have been characterised.  相似文献   

20.
The effects of hypoxia on the metabolism of the central nervous system were investigated in rats submitted to a low oxygen atmosphere (8% O(2); 92% N(2)). [1-(13)C]glucose and [2-(13)C]acetate were used as substrates, this latter being preferentially metabolized by glial cells. After 1-h substrate infusion, the incorporation of 13C in brain metabolites was determined by NMR spectroscopy. Under hypoxia, an important hyperglycemia was noted. As a consequence, when using labeled glucose, the specific enrichment of brain glucose C1 was lower (48.2+/-5.1%) than under normoxia (66.9+/-2.5%). However, relative to this specific enrichment, the (13)C incorporation in amino acids was increased under hypoxia. This suggested primarily a decreased exchange between blood and brain lactate. The glutamate C2/C4 enrichment ratio was higher under hypoxia (0.62+/-0.01) than normoxia (0.51+/-0.06), indicating a lower glutamate turnover relative to the neuronal TCA cycle activity. The glutamine C2/C4 enrichment ratio was also higher under hypoxia (0.87+/-0.07 instead of 0.65+/-0.11), indicating a new balance in the contributions of different carbon sources at the acetyl-CoA level. When using [2-(13)C]acetate as substrate, no difference in glutamine enrichment appeared under hypoxia, whereas a significant decrease in glutamate, aspartate, alanine and lactate enrichments was noted. This indicated a lower trafficking between astrocytes and neurons and a reduced tricarboxylic acid cycle intermediate recycling of pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号