首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The 300-MHz proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio vulgaris were examined while varying the pH and the redox potential. The analysis of the complete NMR reoxidation pattern was done taking into account all the 16 redox states that can be present in the redox titration of a tetra-redox-center molecule. A network of saturation transfer experiments performed at different oxidation stages, between the fully reduced and the fully oxidized states, allowed the observation of different resonances for some of the haem methyl groups. In the present experimental conditions, some of the haems show a fast intramolecular electron exchange rate, but the intermolecular electron exchange is always slow. In intermediate reoxidation stages, large shifts of the resonances of some haem methyl groups were observed upon changing the pH. These shifts are discussed in terms of a pH dependence of the haem midpoint redox potentials. The physiological relevance of this pH dependence is discussed.  相似文献   

2.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

3.
The fumarate reductase from Wolinella succinogenes contains two haem groups with markedly different midpoint potentials (-20 mV and -200 mV). The enzyme is made up of three subunits, the lipophilic one of which (cytochrome b) ligates the haems. Circular dichroism (CD) spectroscopy has been applied to the reductase in order to obtain information on the structure of the haems and of their environment. This approach is integrated with amino acid sequence comparison of the cytochrome b with other quinone-reacting membrane haemoproteins for predicting the axial ligands of the haems as well as their location relative to the membrane. The following results have been obtained: (1) the CD spectra in the Soret region show exciton coupling indicating haem-haem interaction, which is particularly evident in the reduced state and disappears upon denaturation of the enzyme; (2) The apoprotein of cytochrome b is predicted to consist of five hydrophobic helices (helices A-D and cd), four of which should span the membrane. Helices A, B, C and cd contain a histidine residue each which possibly forms one of the ligands of the haems. It is proposed that haem b (-20 mV) is ligated by H44 and H93, and haem b (-200 mV) by H143 and H182.  相似文献   

4.
A comprehensive study of the thermodynamic redox behavior of the hemes from the cbb3 oxygen reductase from Bradyrhizobium japonicum was performed. This enzyme is a member of the C-type heme-copper oxygen reductase superfamily and has three subunits with six redox centers: four low-spin hemes and a high-spin heme and one copper ion, composing the site where oxygen is reduced. In this analysis, the visible spectra and redox properties of the five heme centers were deconvoluted. Their redox profiles and the pH dependence of the midpoint reduction potentials (redox-Bohr effect) were investigated. The reference reduction potentials (defined for a state where all centers are reduced) and homotropic interaction potentials were determined in the framework of a model of pairwise interacting redox centers. At pH 7.7, the reference reduction potentials for the three hemes c are 390, 300, and 220 mV, with low interaction potentials between them, weaker than -15 mV. For hemes b and b3, reference reduction potentials of 375 and 290 mV, respectively, were obtained; these two redox centers show an interaction potential weaker than -60 mV. The midpoint reduction potentials of all five hemes are pH-dependent. The study of these thermodynamic parameters is important in understanding the coupling mechanism of the redox and chemical processes during oxygen reduction. The analysis of the thermodynamic redox behavior of the cbb3 oxygen reductase contributes to the investigation of the mechanism of electron transfer and proton translocation by heme-copper oxygen reductases in general and indicates a thermodynamic coupling for the electron and proton transfer mechanisms.  相似文献   

5.
The aerobic respiratory chain of the thermohalophilic bacterium Rhodothermus marinus has been extensively studied. In this study the isolation and characterization of a third oxygen reductase expressed in this organism are described. This newly isolated enzyme is a typical member of the type B family of haem-copper oxygen reductases, showing 43% amino acid sequence identity and 63% similarity with the ba3 oxygen reductase from Thermus thermophilus. It constitutes two subunits with apparent molecular masses of 42 and 38 kDa. It contains a low-spin B-type haem and a high-spin A-type haem. A stoichiometry of 1B: 1A haem per protein was obtained by spectral integration of UV-visible spectra. Metal analysis showed the presence of two iron and three copper ions, which is in agreement with the existence of a CuA centre. Taking advantage of having two spectroscopically distinct haems, the redox behaviour of the ba3 oxygen reductase was analysed and discussed in the framework of a model with interacting centres. Both haems, B and A, present two transitions, have unusually low reduction potentials of -65 mV and an interaction potential of -52.5 mV.  相似文献   

6.
 Reduction of the haems in tetrahaem cytochromes c 3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c 3 form a structural motif that is present in all cytochromes c 3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c 3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c 3. NMR studies of F20I cytochrome c 3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c 3 backbone, which is also very close to haem I, had no effect on the network of cooperativities. Received: 25 June 1996 / Accepted: 26 August 1996  相似文献   

7.
The characterisation of individual centres in multihaem proteins is difficult due to the similarities in the redox and spectroscopic properties of the centres. NMR has been used successfully to distinguish redox centres and allow the determination of the microscopic thermodynamic parameters in several multihaem cytochromes c(3) isolated from different sulphate-reducing bacteria. In this article we show that it is also possible to discriminate the kinetic properties of individual centres in multihaem proteins, if the complete microscopic thermodynamic characterisation is available and the system displays fast intramolecular equilibration in the time scale of the kinetic experiment. The deconvolution of the kinetic traces using a model of thermodynamic control provides a reference rate constant for each haem that does not depend on driving force and can be related to structural factors. The thermodynamic characterisation of three tetrahaem cytochromes and their kinetics of reduction by sodium dithionite are reported in this paper. Thermodynamic and kinetic data were fitted simultaneously to a model to obtain microscopic reduction potentials, haem-haem and haem-proton interacting potentials, and reference rate constants for the haems. The kinetic information obtained for these cytochromes and recently published data for other multihaem cytochromes is discussed with respect to the structural factors that determine the reference rates. The accessibility for the reducing agent seems to play an important role in controlling the kinetic rates, although is clearly not the only factor.  相似文献   

8.
The characterisation of individual centres in multihaem proteins is difficult due to the similarities in the redox and spectroscopic properties of the centres. NMR has been used successfully to distinguish redox centres and allow the determination of the microscopic thermodynamic parameters in several multihaem cytochromes c3 isolated from different sulphate-reducing bacteria. In this article we show that it is also possible to discriminate the kinetic properties of individual centres in multihaem proteins, if the complete microscopic thermodynamic characterisation is available and the system displays fast intramolecular equilibration in the time scale of the kinetic experiment. The deconvolution of the kinetic traces using a model of thermodynamic control provides a reference rate constant for each haem that does not depend on driving force and can be related to structural factors. The thermodynamic characterisation of three tetrahaem cytochromes and their kinetics of reduction by sodium dithionite are reported in this paper. Thermodynamic and kinetic data were fitted simultaneously to a model to obtain microscopic reduction potentials, haem-haem and haem-proton interacting potentials, and reference rate constants for the haems. The kinetic information obtained for these cytochromes and recently published data for other multihaem cytochromes is discussed with respect to the structural factors that determine the reference rates. The accessibility for the reducing agent seems to play an important role in controlling the kinetic rates, although is clearly not the only factor.  相似文献   

9.
The effects of pH and inhibitors on the spectra and redox properties of the haems b of the bc1 complex of beef heart submitochondrial particles were investigated. The major findings were: (1) both haems have a weakly redox-linked protonatable group with pKox and pKred of around 6 and 8; (2) at pH values above 7, haem bH becomes heterogeneous in its redox behaviour. This heterogeneity is removed by the Qi site inhibitors antimycin A, funiculosin and HQNO, but not by the Qo site inhibitors myxothiazol or stigmatellin; (3) of all inhibitors tested only funiculosin had a large effect on the Em/pH profile of either haem b. In all cases where definite effects were found, the haem most affected was that thought to be closest to the site of inhibitor binding; (4) spectral shifts of haem groups caused by inhibitor binding were usually, but not always, of the haem group closest to the binding site; (5) titrations with succinate/fumarate were in reasonable agreement with redox-mediated data provided that strict anaerobiosis was maintained. Apparent large shifts of haem midpoint potentials with antimycin A and myxothiazol could be produced in aerobic succinate/fumarate titrations in the presence of cyanide, as already reported in the literature, but these were artefactual; (6) the heterogeneous haem bH titration behaviour can be simulated with a model similar to that proposed by Salerno et al. (J. Biol. Chem. (1989) 264, 15398-15403) in which there is redox interaction between haem bH and ubiquinone species bound at the Qi site. Simulations closely fit both the haem bH data and known semiquinone data only if it is assumed that semiquinone bound to oxidised haem bH is EPR-silent.  相似文献   

10.
The unambiguous assignment of the nuclear magnetic resonance (NMR) signals of the alpha-substituents of the haems in the tetrahaem cytochrome isolated from Shewanella frigidimarina NCIMB400, was made using a combination of homonuclear and heteronuclear experiments. The paramagnetic (13)C shifts of the nuclei directly bound to the porphyrin of each haem group were analysed in the framework of a model for the haem electronic structure. The analysis yields g-tensors for each haem, which allowed the assignment of some electron paramagnetic resonance (EPR) signals to specific haems, and the orientation of the magnetic axes relative to each haem to be established. The orientation of the axial ligands of the haems was determined semi-empirically from the NMR data, and the structural results were compared with those of the homologous tetrahaem cytochrome from Shewanella oneidensis MR-1 showing significant similarities between the two proteins.  相似文献   

11.
Two-dimensional NMR has been used to make specific assignments for the four haems in Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c3 and to determine their haem core architecture. The NMR signals from the haem protons were assigned according to type using two-dimensional NMR experiments which led to four sets of signals, one for each of the haems. Specific assignments were obtained by calculating the ring current shifts which arise from other haems and aromatic residues. Observation of interhaem NOEs confirmed the assignments and established that the relative orientation of the haems is identical to that found in the crystal structure of D. vulgaris (Miyazaki F.) ferricytochrome c3. Assignments were also made for all the aromatic residues except for the haem ligands and F20, which is shifted under the main envelope of signals. The NOEs observed between these aromatic protons and haem protons confirm the similarity between the structures in solution and in the crystal. The assignments reported here are the basis for the cross-assignments of the four microscopic haem redox potentials to specific haems in the protein structure [Salgueiro, C. A., Turner, D. L., Santos, H., LeGall, J. and Xavier, A. V. (1992) FEBS Lett., in the press]  相似文献   

12.
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.  相似文献   

13.
Trihaem cytochrome c3 (also known as cytochrome c551.5 and cytochrome c7) is isolated from the periplasmic space of Desulfuromonas acetoxidans, a sulfur-reducing bacterium. Thermodynamic and kinetic data for the trihaem cytochrome c3 are presented and discussed in the context of the possible physiological implications of its functional properties with respect to the natural habitat of D. acetoxidans, namely as a symbiont with green sulfur bacteria working as a mini-sulfuretum. The thermodynamic properties were determined through the fit of redox titration data, followed by NMR and visible spectroscopy, to a model of four functional centres that describes the network of cooperativities between the three haems and one protolytic centre. The kinetics of trihaem cytochrome c3 reduction by sodium dithionite were studied using the stopped-flow technique and the data were fitted to a kinetic model that makes use of the thermodynamic properties to obtain the rate constants of the individual haems. This analysis indicates that the electrons enter the cytochrome mainly via haem I. The reduction potentials of the haems in this cytochrome show little variation with pH within the physiological range, and the kinetic studies show that the rates of reduction are also independent of pH in the range studied. Thus, although the trihaem cytochrome c3 is readily reduced by hydrogenases from Desulfovibrio sp. and its haem core is similar to that of the homologous tetrahaem cytochromes c3, its physico-chemical properties are quite different, which suggests that these multihaem cytochromes with similar structures perform different functions.  相似文献   

14.
The midpoint potentials of the primary electron acceptors in chromatophores from Rhodopseudomonas spheroides and Chromatium have been studied by titrating the laser-induced P605 and cytochrome c oxidations, respectively. Both midpoint potentials are pH dependent (60 mV/pH unit).o-Phenanthroline shifts the midpoint potentials of the primary acceptors, by +40 mV in Rps spheroides and +135 mV in Chromatium. A similar though less extensive change in midpoint potential was observed in the presence of batho-phenanthroline, but not with 8-hydroxyquinoline. The shifted midpoints retain the same dependence on pH.Some of the effects of o-phenanthroline can be explained by assuming that it chelates the reduced form of the primary electron acceptor. This suggests the presence in the primary electron acceptor of a metal chelated by o- and batho-phenanthroline.In Rps spheroides chromatophores o-phenanthroline inhibits the laser- and flash-induced carotenoid shift at all redox potentials, stimulates the laser-induced P605 oxidation at redox potentials between +350 and +420 mV and slows the decay of the laser-induced cytochrome c oxidation below +180 mV. These effects show that o-phenanthroline may have more than one site of action.  相似文献   

15.
Kálmán L  Williams JC  Allen JP 《Biochemistry》2011,50(16):3310-3320
The energetics of a Mn cofactor bound to modified reaction centers were determined, including the oxidation/reduction midpoint potential and free energy differences for electron transfer. To determine these properties, a series of mutants of Rhodobacter sphaeroides were designed that have a metal-ion binding site that binds Mn2+ with a dissociation constant of 1 μM at pH 9.0 (Thielges et al. (2005) Biochemistry 44, 7389-7394). In addition to the Mn binding site, each mutant had changes near the bacteriochlorophyll dimer, P, that resulted in altered P/P+ oxidation/reduction midpoint potentials, which ranged from 480 mV to above 800 mV compared to 505 mV for wild type. The bound Mn2+ is redox active and after light excitation can rapidly reduce the oxidized primary electron donor, P+. The extent of P+ reduction was found to systematically range from a full reduction in the mutants with high P/P+ midpoint potentials to no reduction in the mutant with a potential comparable to wild type. This dependence of the extent of Mn2+ oxidation on the P/P+ midpoint potential can be understood using an equilibrium model and the Nernst equation, yielding a Mn2+/Mn3+ oxidation/reduction midpoint potential of 625 mV at pH 9. In the presence of bicarbonate, the Mn2+/Mn3+ potential was found to be 90 mV lower with a value of 535 mV suggesting that the bicarbonate serves as a ligand to the bound Mn. Measurement of the electron transfer rates yielded rate constants for Mn2+ oxidation ranging from 30 to 120 s(-1) as the P/P+ midpoint potentials increased from 670 mV to approximately 805 mV in the absence of bicarbonate. In the presence of bicarbonate, the rates increased for each mutant with values ranging from 65 to 165 s(-1), reflecting an increase in the free energy difference due to the lower Mn2+/Mn3+ midpoint potential. This dependence of the rate constant on the P/P+ midpoint potential can be understood using a Marcus relationship that yielded limits of at least 150 s(-1) and 290 meV for the maximal rate constant and reorganization energy, respectively. The implications of these results are discussed in terms of the energetics of proteins with redox active Mn cofactors, in particular, the Mn4Ca cofactor of photosystem II.  相似文献   

16.
The six-coordinate monohaem ferricytochrome b-562 from Escherichia coli exhibits two haem-linked pH-dependent transitions detected by NMR and optical spectroscopy. Only one of these transitions, that of the Fe(III)-coordinated His-102, is detected by EPR and MCD; the ionisation of a haem propionate is not. Both ionisations are redox-state-dependent and the midpoint redox potential of the protein is markedly pH-dependent. Over the pH range 5.0 to 8.5 the potential drops from 260 mV to 110 mV and at least five single proton ionisations are responsible for this. In addition to the two spectroscopically identified ferricytochrome ionisations, there are at least three unidentified ionisations, two of which occur in the ferrous protein. From a consideration of the X-ray structure, together with NMR data, it seems probable that at least one of these ionisations involves an amino acid carboxylate. The X-ray structure also suggests that the relatively low pKa of His-102 is a result of its proximity to Arg-98. However, an appreciable interaction between these groups requires that the solution conformation differs slightly from the X-ray structure. The fast rate of electron self-exchange, over 4 X 10(6) M-1 X s-1 at 315 K and pH* 7, may be a reflection of the fact that, as shown by the X-ray structure, a large amount of the haem and axial histidine ligand are exposed at the molecular surface with an asymmetric distribution of charged groups surrounding them.  相似文献   

17.
Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The "split-Soret" cytochrome (SSC) was isolated from the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 and has no significant nitrate or nitrite reductase activity. The protein received its name due its unusual spectral properties. It is a dimer containing two identical subunits of 26.3 kDa, each with two haem-c groups. A preliminary model for the three-dimensional structure of this cytochrome was derived using the Multiple Wavelength Anomalous Dispersion (MAD) phasing method. This model shows that SSC is indeed a dimer containing four haems at one end of the molecule. In each monomer the two haems have their edges overlapped within van der Waals contacts with an iron-to-iron distance of 9?Å. The polypeptide chain of each monomer supplies the sixth axial ligand to the haems of the other monomer. This work shows that SSC constitutes a new class of cytochrome. The stacking of the two haems in the monomer within van der Waals distances of each other, and also the short (van der Waals) distances between the two monomers in the dimeric molecule are unprecedented in hemoproteins. This particular haem arrangement is an excellent model for the spectral study (undertaken several years ago) of haem-haem interaction using the aggregated haem undecapeptide derived from mammalian cytochrome c.  相似文献   

18.
The thermodynamic properties of redox components associated with the reaction center of Rhodopseudomonas viridis have been characterized with respect to their midpoint potentials and relationship with protons. In particular a midpoint potential for the intermediary electron carrier acting between the reaction center bacteriochlorophyll and the primary acceptor has been determined. The rationale for this measurement was that the light-induced triplet/biradical EPR signal would not be observed if this intermediate was chemically reduced before activation. The midpoint potential of the intermediary at pH 10.8 is about --400 mV (n=1).  相似文献   

19.
 The di-haem cytochrome c peroxidase of Paracoccus denitrificans is a calcium binding dimer of 37.5 kDa subunits. It is responsible for reduction of H2O2 to H2O with oxidation of cytochrome c 550 and is isolated in a fully oxidised state (inactive) in which one haem (centre I) is in a high-spin/low-spin equilibrium and high potential and the other (centre II) is low-spin and low potential. The enzyme undergoes direct electron transfer (without the need for mediators) with a 4,4′-dithiodipyridine-modified gold electrode and the response of both haem groups can be observed. By combination of the cyclic and pulse voltammetric data with the established spectroscopic information, it was demonstrated that entry of one electron to the high potential haem leads (in a mechanism involving strong haem-haem interactions) to a complex change of spin states and redox potentials of both haems in order to attain a "ready state" for binding, reduction and cleavage of the hydrogen peroxide. In the absence of endogenous calcium, haem communication can be completely disconnected and is recovered only when Ca2+ is added, an essential step for the formation of the peroxidatic site. The intricate electrochemical behaviour of this enzyme was interpreted as a mechanism involving, both reduction and oxidation of the high potential haem, an interfacial electron transfer coupled to a homogenous chemical reaction (EC mechanism). We discuss two different models for the sequence of events leading to the appearance of the active pentacoordinated peroxidatic haem. Received: 29 April 1998 / Accepted: 3 September 1998  相似文献   

20.
Soluble turnip cytochrome f has been purified from the periplasmic fraction of Escherichia coli expressing a truncated petA gene encoding the precursor protein lacking the C-terminal 33 amino-acid residues. The protein is identical [as judged by 1H-NMR spectroscopy, midpoint redox potential (+ 365 mV) and electron transfer reactions with plastocyanin] to cytochrome f purified from turnip leaves. Several residues in the hydrophobic patch surrounding the haem group have been changed by site-directed mutagenesis, and the proteins purified from E. coli. The Y1F and Q7N mutants showed only minor changes in the plastocyanin-binding constant Ka and the second-order rate constant for electron transfer to plastocyanin, whereas the Y160S mutant showed a 30% decrease in the overall rate of electron transfer caused in part by a 60% decrease in binding constant and partially compensated by an increased driving force due to a 27-mV decrease in redox potential. In contrast, the F4Y mutant showed increased rates of electron transfer which may be ascribed to an increased binding constant and a 14-mV decrease in midpoint redox potential. This indicates that subtle changes in the hydrophobic patch can influence rates of electron transfer to plastocyanin by changing the binding constants and altering the midpoint redox potential of the cytochrome haem group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号