首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adenoviruses target their double-stranded DNA genome and its associated core proteins to the interphase nucleus; this core structure then enters through the nuclear pore complex. We have used digitonin permeabilized cell import assays to study the cellular import factors involved in nuclear entry of virus DNA and the core proteins, protein V and protein VII. We show that inhibition of transportin results in aberrant localization of protein V and that transportin is necessary for protein V to accumulate in the nucleolus. Furthermore, inhibition of transportin results in inhibition of protein VII and DNA import, whereas disruption of the classical importin alpha-importin beta import pathway has little effect. We show that mature protein VII has different import preferences from the precursor protein, preVII from which it is derived by proteolytic processing. While bacterially expressed glutathione S-transferase (GST)-preVII primarily utilizes the pathway mediated by importin alpha-importin beta, bacterially expressed GST-VII favours the transportin pathway. This is significant because while preVII is important during viral replication and assembly only mature VII is available during viral DNA import to a newly infected cell. Our results implicate transportin as a key import receptor for the nuclear localization of adenovirus core.  相似文献   

2.
The present study has documented changes in the in situ distribution of viral DNA and capsid proteins in 293 cells infected with fiber gene-deleted adenoviruses. It shows that infection results in the intense production of progeny viruses which appear morphologically intact although they are devoid of fiber-coding sequence in their genome and hence of fiber protein in their capsid. The data confirm, therefore, that fiber protein is not essential for the assembly of progeny viruses. The main contribution of our observations concerns specific intranuclear structures induced by infection with either wild-type or fiber gene-deleted viruses. These clear amorphous inclusions contain two cellular proteins, PML and Sp100, which in non-infected cells co-localize to a special type of nuclear bodies. PML and Sp100 nuclear bodies appear to directly modulate or to be altered in a wide variety of situations including viral infections, cell death and transformation. In cells infected with fiber gene-deleted viruses, the clear amorphous inclusions now accumulate non-used hexon and penton base proteins, whereas the absence of fiber protein prevents the assembly of capsid proteins in crystallin arrays. Taken together, the data suggest that the clear amorphous inclusions may correspond to storage sites of structural and regulatory proteins. Consequently, these virus-induced structures may promote the productive cycle of adenoviruses by regulating the amount of over-produced viral proteins and the shutoff of the host cell metabolism.  相似文献   

3.
Qu D  Zhang Y  Ma J  Guo K  Li R  Yin Y  Cao X  Park DS 《Journal of neurochemistry》2007,103(1):408-422
SET is a multi-functional protein in proliferating cells. Some of the proposed functions of SET suggest an important nuclear role. However, the nuclear import pathway of SET is also unknown and the function of SET in neurons is unclear. Presently, using cortical neurons, we report that the nuclear import of SET is mediated by an impalpha/impbeta-dependent pathway. Nuclear localization signal, (168)KRSSQTQNKASRKR(181), in SET interacts with impalpha3, which recruits impbeta to form a ternary complex, resulting in efficient transportation of SET into nucleus. By in vitro nuclear import assay based on digitonin-permeabilized neurons, we further demonstrated that the nuclear import of SET relies on Ran GTPase. We provide evidence that this nuclear localization of SET is important in neuronal survival. Under basal conditions, SET is predominately nuclear. However, upon death induced by genotoxic stress, endogenous SET decreases in the nucleus and increases in the cytoplasm. Consistent with a toxic role of SET in the cytoplasm, targeted expression of SET to the cytoplasm exacerbates death compared to wild type SET expression which is protective following DNA damage. Taken together, our results indicate that SET is imported into the nucleus through its association with impalpha3/impbeta, and that localization of SET is important in regulation of neuronal death.  相似文献   

4.
S100B(betabeta) is a dimeric Ca2+-binding protein that is known to inhibit the protein kinase C (PKC)-dependent phosphorylation of several proteins. To further characterize this inhibition, we synthesized peptides based on the PKC phosphorylation domains of p53 (residues 367-388), neuromodulin (residues 37-53), and the regulatory domain of PKC (residues 19-31), and tested them as substrates for PKC. All three peptides were shown to be good substrates for the catalytic domain of PKC. As for full-length p53 (Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. 1992. Proc Natl Acad Sci USA 89:11627-11631), S100B(betabeta) binds the p53 peptide and inhibits its PKC-dependent phosphorylation (IC50 = 10 +/- 7 microM) in a Ca2+-dependent manner. Similarly, phosphorylation of the neuromodulin peptide and the PKC regulatory domain peptide were inhibited by S100B(betabeta) in the presence of Ca2+ (IC50 = 17 +/- 5 microM; IC50 = 1 +/- 0.5 microM, respectively). At a minimum, the C-terminal EF-hand Ca2+-binding domain (residues 61-72) of each S100beta subunit must be saturated to inhibit phosphorylation of the p53 peptide as determined by comparing the Ca2+ dependence of inhibition ([Ca]IC50 = 29.3 +/- 17.6 microM) to the dissociation of Ca2+ from the C-terminal EF-hand Ca2+-binding domain of S100B(betabeta).  相似文献   

5.
Many lines of evidence indicate that neoplastic transformation of cells occurs by a multistep process. For neoplastic transformation of normal human cells, they must be first immortalized and then be converted into neoplastic cells. It is well known that the immortalization is a critical step for the neoplastic transformation of cells and that the immortal phenotype is recessive. Thus, we investigated proteins downregulated in immortalized cells by two-dimensional gel electrophoresis. As a result, S100C, a Ca(2+)-binding protein, was dramatically downregulated in immortalized human fibroblasts compared with their normal counterparts. When the cells reached confluence, S100C was phosphorylated on threonine 10. Then the phosphorylated S100C moved to and accumulated in the nuclei of normal cells, whereas in immortalized cells it was not phosphorylated and remained in the cytoplasm. Microinjection of the anti-S100C antibody into normal confluent quiescent cells induced DNA synthesis. Furthermore, when exogenous S100C was compelled to localize in the nuclei of HeLa cells, their DNA synthesis was remarkably inhibited with increase in cyclin-dependent kinase inhibitors such as p16(Ink4a) and p21(Waf1). These data indicate the possible involvement of nuclear S100C in the contact inhibition of cell growth.  相似文献   

6.
Porcine circovirus type 1 (PCV1) contains two major open reading frames encoding the replication-associated proteins and the major structural capsid (Cap) protein. PCV1 Cap has an N-terminus carrying several potential monopartite or bipartite nuclear localization signals (NLS). The contribution of these partially overlapping motifs to nuclear importing was identified by expression of mutated PCVI Cap versions fused to enhanced green fluorescent protein (EGFP). The Cterminus truncated PCV1 Cap-EGFP was localized in nuclei of PK-15 cells similar to the wild-type PCV1 Cap-EGFP, whereas truncation of the N-terminus rendered the fusion protein distributed into cytoplasm, indicating that the nuclear import of PCV1 Cap was efficiently mediated by its N-terminal region. Substitutions of basic residues in stretches 9RR- RR12 or the right part of 25RRPYLAHPAFRNRYRWRRK43 resulted in a diffused distribution of the fusion protein in both nuclei and cytoplasm, indicating that the two NLSs were responsible for restricted nuclear targeting of PCV1 Cap.  相似文献   

7.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

8.
S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its phosphorylation by PKC. Hence, structural studies of Ca2+-loaded S100B(beta beta) bound to the p53 peptide were initiated to characterize this interaction. Analysis of nuclear Overhauser effect (NOE) correlations, amide proton exchange rates, 3J(NH-H alpha) coupling constants, and chemical shift index data show that, like apo- and Ca2+-bound S100B(beta beta), S100B remains a dimer in the p53 peptide complex, and each subunit has four helices (helix 1, Glu2-Arg20; helix 2, Lys29-Asn38; helix 3, Gln50-Asp61; helix 4, Phe70-Phe87), four loops (loop 1, Glu21-His25; loop 2, Glu39-Glu49; loop 3, Glu62-Gly66; loop 4, Phe88-Glu91), and two beta-strands (beta-strand 1, Lys26-Lys28; beta-strand 2, Glu67-Asp69), which forms a short antiparallel beta-sheet. However, in the presence of the p53 peptide helix 4 is longer by five residues than in apo- or Ca2+-bound S100B(beta beta). Furthermore, the amide proton exchange rates in helix 3 (K55, V56, E58, T59, L60, D61) are significantly slower than those of Ca2+-bound S100B(beta beta). Together, these observations plus intermolecular NOE correlations between the p53 peptide and S100B(beta beta) support the notion that the p53 peptide binds in a region of S100B(beta beta), which includes residues in helix 2, helix 3, loop 2, and the C-terminal loop, and that binding of the p53 peptide interacts with and induces the extension of helix 4.  相似文献   

9.
Summary— Using two-dimensional polyacrylamide gels stained with Coomassie blue we have studied the protein composition of the nuclear matrix obtained from mouse erythroleukemic nuclei kept at O°C throughout the isolation procedure to prepare the high ionic strength resistant fraction (control matrix) or stabilized in vitro or in vivo by different procedures prior to subfractionation (ie 37°C incubation of isolated nuclei; sodium tetrathionate exposure of purified nuclei; heat shock of intact cells). When the matrix obtained from 37°C incubated nuclei was compared with the control matrix, striking differences in the polypeptide pattern were seen if the protein was obtained in both cases from an equivalent number of nuclei. On the other hand, if the same amount of protein for both the samples was applied to the gels the differences were less evident. Sodium tetrathionate stabilization of isolated nuclei and heat shock of intact cells produced a matrix protein pattern that was very similar and differed from that of the in vitro heat-exposed matrix. Using specific polyclonal antisera, we demonstrate that nucleolar proteins B23/numatrin and C23/nucleolin were very abundant in the matrix obtained from chemically-treated nuclei or in vivo heat-stabilized nuclei but were recovered in very small amounts (B23) or completely absent (C23) in the matrix prepared from nuclei heated to 37°C in vitro. Differences were seen also in the recovery of nuclear lamins, and especially lamin B, that was poorly represented in the sodium tetrathionate-stabilized matrix. The results demonstrate that in mouse erythroleukemia cells the increased recovery of nuclear matrix protein that is seen after in vitro heating of isolated nuclei is predominantly due to an additional recovery of the same types of polypeptides that are detected also in the absence of such a treatment. The data also indicate that in vivo heat shock of intact cells produces a nuclear matrix protein pattern that is more similar to the pattern seen after stabilization of purified nuclei with sodium tetrathionate and differs significantly from that obtained by exposing nuclei to 37°C in vitro, unlike to that what previous reports have indicated.  相似文献   

10.
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.  相似文献   

11.
The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.  相似文献   

12.
The S100B protein belongs to a family of small Ca2+-binding proteins involved in several functions including cytoskeletal reorganization. The effect of S100B on protein phosphorylation was investigated in a cytoskeletal fraction prepared from immature rat hippocampus. An inhibitory effect of 5 M S100B on total protein phosphorylation, ranging from 25% to 40%, was observed in the presence of Ca2+ alone, Ca2+ plus calmodulin or Ca2+ plus cAMP. Analysis by two dimensional electrophoresis revealed a Ca2+/calmodulin-dependent and a Ca2+/cAMP-dependent inhibitory effect of S100B, ranging from 62% to 67% of control, on the phosphorylation of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. The fact that S100B binds to the N-terminal domain of GFAP and that the two proteins are co-localized in astrocytes suggests a potential in vivo role for S100B in modulating the phosphorylation of intermediate filament proteins in glia.  相似文献   

13.
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.  相似文献   

14.
H. van Ormondt  B. Hesper 《Gene》1983,21(3):217-226
The nucleotide sequences of human adenovirus serotypes 12 (Ad 12, oncogenic subgroup A), 7 (Ad7, weakly oncogenic subgroup B) and 5 (Ad5, non-oncogenic subgroup C) DNAs have been compared. The region studied stretches from the termination codon of region Ela (m.p. 4.2) and comprises the entire region of the three viral DNAs. ending at the polyadenylation signal of the gene for viral polypeptide IVa2 (m.p. 11.2). The homology in the sequences encoding the Elb proteins of Mr 20000 and Mr 55000 is 55–60%, when two serotypes are compared, and about 45% in a three-strain comparison. However, a short internal segment encoding the C terminus of the Mr 20000 protein, and at the same time amino acids 23-120 of the Mr 55000 protein show a much higher degree of divergence in the three strains, as do the noncoding areas. The present study does not reveal how the three serotypes are phylogenetically related.  相似文献   

15.
Bernes S  Siman-Tov R  Ankri S 《FEBS letters》2005,579(28):6395-6402
The protozoan parasite Entamoeba histolytica expresses a cytosine-5 DNA methyltransferase (Ehmeth) that belongs to the DNMT2 protein family. The biological function of members of this DNMT2 family is unknown. In the present study, the 5' region of E. histolytica heat shock protein 100 (5'EHsp100) was isolated by affinity chromatography with 5-methylcytosine antibodies as ligand. The methylation status of 5'EHsp100 was confirmed by sodium bisulfite sequencing. We showed that the expression of EHsp100 was induced by heat shock, 5-azacytidine (5-AzaC), an inhibitor of DNA methyltransferase and Trichostatin A (TSA), an inhibitor of histone deacetylase. The effect of TSA on EHsp100 expression was rapidly reversed by removing the drug from the culture. In contrast, EHsp100 expression was still detectable one month after removing 5-AzaC from the media. Whereas 5-AzaC and TSA caused demethylation in the promoter region of EHsp100, no demethylation was observed following heat shock. Remarkably, DNA that includes three putative heat shock elements identified in the promoter region of EHsp100 bound to a protein of 37kDa present in the nuclear fraction of heat-shocked trophozoites but absent in the nuclear fraction of 5-AzaC and TSA treated trophozoites. Our data suggest that EHsp100 expression can be regulated by both a classical and an epigenetic mechanism.  相似文献   

16.
NFKB2 is a member of the NFKB/Rel gene family, which is known to be a pivotal regulator of the acute phase and immune responses. NF-κB2 is initially synthesized as a ∼100 000 M r protein which needs to be processed in order to bind DNA, either as homodimer or as heterodimer with other members of the NF-κB/Rel family. The unprocessed form of NF-κB2 acts as an IκB-like protein. Therefore, NF-κB2 has a dual function. In this report we describe the genomic structure, expression pattern, and chromosomal localization of mouse NFKB2. Genomic clones were isolated, which span the entire gene of approximately 8.5 kilobases (kb) including 1.5 kb of the promoter region. Comparison to its human and avian homologues revealed a strong evolutionary conservation of the gene structure including the exon/intron borders, sequence, and position of the nuclear localization signal, the glycine-hinge region, and the ankyrin repeats. By fluorescence in situ hybridization, mouse NFKB2 was mapped to Chromosome (Chr) MMU 19C3-D2, which is homologous to human Chr 10q24, at which position the human NFKB2 was previously located. NFKB2 is ubiquitously expressed, highest in lymph nodes and thymus, underlining its role in the immune function. Received: 14 January 1999 / Revised: 29 March 1999  相似文献   

17.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.  相似文献   

18.
The C terminus of the nuclear protein NuMA, NuMA-CT, has a well-known function in mitosis via its proximal segment, but it seems also involved in the control of differentiation. To further investigate the structure and function of NuMA, we exploited established computational techniques and tools to collate and characterize proteins with regions similar to the distal portion of NuMA-CT (NuMA-CTDP). The phylogenetic distribution of NuMA-CTDP was examined by PSI-BLAST- and TBLASTN-based analysis of genome and protein sequence databases. Proteins and open reading frames with a NuMA-CTDP-like region were found in a diverse set of vertebrate species including mammals, birds, amphibia, and early teleost fish. The potential structure of NuMA-CTDP was investigated by searching a database of protein sequences of known three-dimensional structure with a hidden Markov model (HMM) estimated using representative (human, frog, chicken, and pufferfish) sequences. The two highest scoring sequences that aligned to the HMM were the extracellular domains of beta3-integrin and Her2, suggesting that NuMA-CTDP may have a primarily beta fold structure. These data indicate that NuMA-CTDP may represent an important functional sequence conserved in vertebrates, where it may act as a receptor to coordinate cellular events.  相似文献   

19.
20.
S100B蛋白是主要由神经胶质细胞分泌的一种钙结合蛋白,在生理浓度下,S100B蛋白具有旁分泌或自分泌神经营养作用,高浓度时则具有神经毒害作用。脑脊液、血液、尿液、唾液、羊水等体液中S100B蛋白水平的升高被认为是多种疾病的生物学指标,如急性脑损伤、围产期脑损伤、脑肿瘤、神经系统炎症性或退行性疾病,精神疾病等。S100B蛋白不仅仅是一种生物学指标,也可作为疾病治疗的靶向目标。目前存在的主要问题是,S100B蛋白主要由受损细胞渗漏,还是病理生理条件下分泌的S100B蛋白造成了细胞损伤。本文就S100B蛋白在神经科疾病中的诊断、治疗及新进展做一综述,并提出进一步研究的设想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号