首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding.  相似文献   

2.
A wheat ethylene receptor homologue (W-er1) was isolated from a wheat stem cDNA library using the Arabidopsis ETR1 cDNA as a probe. The predicted amino acid sequence of W-er1 is over 70% similar to ERS1 from Arabidopsis and exhibits homology to bacterial two-component response regulators within the histidine kinase domain. Northern hybridization demonstrated that W-er1 was expressed in stem, leaf and root tissues. Treatments known to induce senescence of detached leaves including jasmonate, abscisic acid and wounding, increased the accumulation of W-er1 mRNA, while benzyladenine treatment did not. These data suggest that W-er1 may play a role in the process of leaf senescence.  相似文献   

3.
Role of ethylene in the senescence of detached rice leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Kao CH  Yang SF 《Plant physiology》1983,73(4):881-885
The role of ethylene in the senescence of detached rice leaves in relation to their changes in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production was studied. In freshly excised rice leaf segments, ACC level and ethylene production rates were very low. Following incubation, the rates of ethylene production increased and reached a maximum in 12 h, and subsequently declined. The rise of ethylene production was associated with a 20- to 30-fold increase in ACC level.

Ethylene seems to be involved in the regulation of the senescence of detached rice leaves. This conclusion was based on the observations that (a) maximum ethylene production preceded chlorophyll degradation, (b) ACC application promoted chlorophyll degradation, (c) inhibitors of ethylene production and ethylene action retarded chlorophyll degradation, and (d) various treatments such as light, cycloheximide, α,α-dipyridyl, Ni2+, and cold temperature, which retarded chlorophyll degradation, also inhibited ethylene production.

Abscisic acid promoted senescence but significantly decreased ethylene production, whereas benzyladenine retarded senescence but promoted ethylene production. This is interpreted to indicate that abscisic acid treatment increased the tissue sensitivity to ethylene, whereas benzyladenine treatment decreased it.

  相似文献   

4.
The effects of methyl jasmonate (MJ) and abscisic acid (ABA) on some physiological processes of rice were compared. MJ exhibited ABA-like effects by promoting senescence of detached leaves, by inducing acid phosphatase activity of detached leaves, by inhibiting ethylene production and shoot growth of seedlings, as well as inhibiting callus formation from anthers. However, MJ and ABA had opposite effects on 1-aminocyclopropane-1-carboxylic acid-dependent ethylene production in detached leaves. The regeneration ability of anther-derived callus was inhibited by MJ but not by ABA. MJ but not ABA markedly induced peroxidase activity in senescing detached leaves. It is concluded that not all physiological processes of rice affected by MJ are similar to those by ABA.Abbreviations ABA abscisic acid - MJ methyl jasmonate - ACC 1-aminocyclopropane-l-carboxylic acid - Apase acid phosphatase  相似文献   

5.
The role of ethylene in jasmonate-promoted senescence of detached rice leaves was investigated. Ethylene production in methyl jasmonate-treated leaf segments of rice was lower than in the control leaves. Treatment of leaf segments with silver nitrate or/and silver thiosulfate, inhibitors of ethylene action, inhibited methyl jasmonate-, jasmonic acid-, linolenic acid-, and abscisic acid-promoted senescence of detached leaves. We suggest that an increase in ethylene sensitivity, but not ethylene level, is the initial event triggering the enhanced senescence by jasmonates of detached rice leaves.Abbreviations JA jasmonic acid - MJ methyl jasmonate - STS silver thiosulfate - ABA abscisic acid  相似文献   

6.
Exogenous supply of spermine (Spm) markedly stimulated ethyleneevolution from intact soybean leaves of leaf discs, stronglyincreased the level of free 1-aminocyclopropane-1-carboxylicacid (ACC), and slightly stimulated ethylene forming-enzyme(EFE) activity Spm treatment also resulted in leaf epinastyand accelerated leaf senescence Ethylene stimulation was depressed,but not abolished, by light, and was suppressed by inhibitorsof ACC synthase and EFE activity Spermidine had a less pronouncedstimulatory effect on ethylene production whereas the diaminesputrescine and diaminopropane were without effect These resultscontrast with other reports indicating that di- and polyaminesinhibit ethylene biosynthesis in plants, and extend our previousresults on detached tobacco leaves exogenously treated withpolyamines Glycine max, ethylene, polyamines  相似文献   

7.
New derivatives of aminooxyacetic acid were tested for their ability to inhibit ethylene formation in higher plants. Treatments with {[(isopropylidene)-aminojoxy}-acetic acid-2-(methoxy)-2-oxoethyl ester, {[(isopropylidene)-aminojoxy}-acetic acid-2-(hexyloxy)-2-oxoethyl ester or {[(cyclohexylidene)-amino]oxy}-acetic acid-2-(isopropyloxy)-2-oxoethyl ester reduced ethylene evolution by leaf discs of oilseed rape and drought-stressed barley leaves. The new compounds delayed senescence of cut carnation flowers. The endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and its N-malonyl conjugate were also reduced in the leaf discs of oilseed rape. This suggests that a step in the biosynthesis of ethylene, prior to the formation of ACC, is inhibited by these new compounds. A lag phase in response suggests that these compounds have to be activated most likely by the production of metabolites with a free aminooxy group.  相似文献   

8.
Normal senescence of Petunia hybrida L. (cv. Pink Cascade) was associated with a 10-fold increase in their ethylene production. Soon after pollination wounding of the stigma of detached flowers there was a burst of ethylene production by the gynoecium, which reached a maximum after 3 h. A subsequnt more gradual rise in ethylene production by the flowers was accompanied by blueing, wilting, and senescence of the corolla. Treatment with 1 μl ethylene 1−1 accelerated the onset of senescence as measured first by color change and then by wilting of the corolla. These changes were further accelerated by using older flowers or higher concentrations of ethylene. Senescence was also hastened by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) through the flower pedicel. Petunia pollen contained high concentrations of ACC (300 nmol g−1); treatment of stigmas with ACC (1 m M ) caused a 4-fold increase in their ethylene production. Senescence, whether natural or hastened by pollination or piercing, was delayed by treating the flowers with the anionic silver thiosulfate complex.  相似文献   

9.
During the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV) the inoculated leaves synthesize large quantities of ethylene. At the same time, 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) accumulates. Smaller amounts of MACC are formed concomitant with ethylene synthesis during the normal development of tobacco leaves. The conjugate appears neither to be hydrolysed to liberate ACC, nor to be transported to other plant parts. Its accumulation thus reflects the history of the operation of the pathway of ethylene synthesis in the leaf. In floating leaf discs exogenously applied ACC was converted only slowly to both ethylene and MACC. More ethylene and less MACC were produced in darkness than in light, suggesting that environmental conditions may influence the ratio at which ACC in converted to either ethylene or MACC.  相似文献   

10.
L Fan  S Zheng    X Wang 《The Plant cell》1997,9(12):2183-2196
Membrane disruption has been proposed to be a key event in plant senescence, and phospholipase D (PLD; EC 3.1.4.4) has been thought to play an important role in membrane deterioration. We recently cloned and biochemically characterized three different PLDs from Arabidopsis. In this study, we investigated the role of the most prevalent phospholipid-hydrolyzing enzyme, PLD alpha, in membrane degradation and senescence in Arabidopsis. The expression of PLD alpha was suppressed by introducing a PLD alpha antisense cDNA fragment into Arabidopsis. When incubated with abscisic acid and ethylene, leaves detached from the PLD alpha-deficient transgenic plants showed a slower rate of senescence than did those from wild-type and transgenic control plants. The retardation of senescence was demonstrated by delayed leaf yellowing, lower ion leakage, greater photosynthetic activity, and higher content of chlorophyll and phospholipids in the PLD alpha antisense leaves than in those of the wild type. Treatment of detached leaves with abscisic acid and ethylene stimulated PLD alpha expression, as indicated by increases in PLD alpha mRNA, protein, and activity. In the absence of abscisic acid and ethylene, however, detached leaves from the PLD alpha-deficient and wild-type plants showed a similar rate of senescence. In addition, the suppression of PLD alpha did not alter natural plant growth and development. These data suggest that PLD alpha is an important mediator in phytohormone-promoted senescence in detached leaves but is not a direct promoter of natural senescence. The physiological relevance of these findings is discussed.  相似文献   

11.
Ching Huei Kao  Shang Fa Yang 《Planta》1982,155(3):261-266
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid Recipient of a Republic of China National Science Council Fellowship  相似文献   

12.
Patterns of ehtylene production in senescing leaves   总被引:15,自引:14,他引:1       下载免费PDF全文
Changes in the patterns of ethylene production, chlorophyll content, and respiration were studied in relation to the senescence of intact leaves and leaf discs. The primary leaves of pinto bean, which abscise readily during natural senescence, and tobacco and sugar beet leaves, which do not abscise, were used. A decrease in the rate of ethylene production and respiration, during the slow phase of chlorophyll degradation, was observed in leaf-blade discs cut from mature leaves and aged in the dark. During rapid chlorophyll loss both ethylene production and respiration increased and then decreased. These climacteric-like patterns were shown by leaf discs of all three species. Discs taken from leaves that had been senescing on the plant also showed a climacteric-like rise in ethylene production but not in respiration, which decreased continuously with leaf age. Climacteric-like patterns in the rise of ethylene and respiration for leaf discs were also shown by the petioles of both bean and tobacco leaves. This indicates that the rise of ethylene and respiration is characteristic of the general process of senescence in leaves and is not restricted to the abscission process. In contrast to the ethylene-forming systems in climacteric fruits and many flowers, the one in leaves declines sharply in the early stages of senescence. The subsequent rise of ethylene production appears to be associated with the rapid phase of chlorophyll breakdown, and may indicate the final stage of the senescence process during which ethylene could be actively involved in inducing leaf abscission.  相似文献   

13.
Promotion of senescence of detached maize leaves by jasmonates was investigated. Senescence of detached maize leaves was promoted by linolenic acid, the precursor of biosynthesis of jasmonic acid, and retarded by inhibitors of lipoxygenase, the first enzyme in the biosynthetic pathway of jasmonic acid. Results support a role of endogenous jasmonates in the regulation of senescence of detached maize leaves. Silver thiosulfate, an inhibitor of ethylene action, was found to inhibit methyl jasmonate, linolenic acid- and abscisic acid-promoted senescence of detached maize leaves. It seems that jasmonate-promoted senescence is mediated through an increase in ethylene sensitivity in detached maize leaves.Abbreviations ABA abscisic acid - MJ methyl jasmonate - STS silver thiosulfate  相似文献   

14.
Exogenous application of the lysophospholipid, lyso-phosphatidylethanolamine (LPE) is purported to delay leaf senescence in plants. However, lyso-phospholipids are well known to possess detergent-like activity and application of LPE to plant tissues might be expected to rather elicit a wound-like response and enhance senescence progression. Since phosphatidic acid (PA) accumulation and leaf cell death are a consequence of wounding, PA- and hormone-induced senescence was studied in leaf discs from Philodendron cordatum (Vell.) Kunth plants in the presence or absence of egg-derived 18:0-LPE and senescence progression quantified by monitoring both lipid peroxidation (as the change in malondialdehyde concentration), and by measuring retention of total chlorophyll (Chla+b) and carotenoids (Cc+x). Only abscisic acid (ABA) stimulated lipid peroxidation whereas ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene (ETH), and 16:0–18:2-PA stimulated loss of chloroplast pigments. Results using primary alcohols as attenuators of the endogenous PA signal confirmed a role for PA as an intermediate in both ABA- and ETH-mediated senescence progression. Exogenous 18:0-LPE did not appear to influence senescence progression and was unable to reverse hormone-induced senescence progression. However, when supplied together with 16:0–18:2-PA at 1:1 (mol:mol), activity of phosphatidylglycerol (PG) hydrolase, chlorophyllase (E.C. 3.1.1.14), and progression of leaf senescence were negated. This apparent anti-senescence activity of exogenous 18:0-LPE was associated with induction of the pathogenesis-related protein, extracellular acid invertase (Ac INV, E.C. 3.2.1.26) suggesting that 18:0-LPE like 16:0–18:2-PA functions as an elicitor.  相似文献   

15.
16.
Leaf senescence is a developmentally programmed event, but the initiation and progression of leaf senescence are affected by a range of plant hormones including abscisic acid (ABA), ethylene and methyl jasmonate (MeJA). To investigate plant hormone crosstalk during leaf senescence, hormone-induced senescence phenotypes were analyzed in three leaf senescence mutants [ore1 (oresara1), ore3 and ore9] showing delayed senescence phenotypes in age-dependent and dark-induced senescence. The ore mutants exhibited delayed leaf senescence phenotypes following treatment with ABA, ACC (aminocyclo-propane-1-carboxylic acid) or MeJA. After each hormone treatment, the photochemical efficiency of photosystem II and chlorophyll content were significantly higher in the ore mutant leaves than in the wild-type leaves. The expression of CAB2 and SEN4 in the wild-type was rapidly altered following each hormone treatment. However, the decrease in CAB2 expression and the induction of SEN4 expression in the mutants were less affected by ABA, ACC or MeJA treatment. It is suggested that ORE1, ORE3 and ORE9 are required for the proper progression of leaf senescence mediated by ABA, ethylene and MeJA. This implies that ORE1, ORE3 and ORE9 may be linked to the crosstalk among senescence pathways induced by ABA, ethylene and MeJA, as well as age and darkness.  相似文献   

17.
Water stress, ammonium, and leaf senescence in detached rice leaves   总被引:1,自引:0,他引:1  
Ammonium accumulation in relation to water stress-promoted senescence of detached rice leaves was investigated. The effect of water stress on the senescence of detached rice leaves is associated with the accumulation of ammonium. The accumulation of ammonium in detached rice leaves by water stress is attributed to a decrease in glutamine synthetase activity. Ammonium accumulation in detached rice leaves, induced by water stress, was accompanied by an increase in tissue sensitivity to ethylene which, in turn, accelerated leaf senescence.  相似文献   

18.
The objective of the present work was to describe the simultaneous changes in endogenous levels of cytokinins, abscisic acid, indoleacetic acid and ethylene in detached, senescing tobacco (Nicotiana rustica L.) leaves. These measurements were related to changes in chlorophyll contents, 14CO2 fixation and proline contents — three parameters which have been considered to reflect senescence. Effects of exogenous hormonal treatments on these parameters, as well as on endogenous hormonal levels, provided further evidence for the interrelationships between hormones and for their roles in senescence. Starting with actively growing attached leaves and ending with well-advanced senescence in detached leaves, our data indicate a chronological sequence of three hormonal states: (a) cytokinins — high activity, abscisic acid, auxin and ethylene — low contents (actively growing, attached leaves); (b) cytokinins — low activity, abscisic acid — high, auxin and ethylene — low contents (apparent induction of senescence in detached leaves); and (c) cytokinins and abscisic acid — low, auxin and ethylene — high contents (senescence proper in detached leaves).  相似文献   

19.
The effect of regurgitant from Leptinotarsa decemlineata Say larvae on wound-induced responses was studied using two plant species, Solanum tuberosum L. and Phaseolus vulgaris L. Wounding of one leaf of intact S. tuberosum plants differentially affected ethylene production and activities of peroxidase and polyphenol oxidase. Only polyphenol oxidase activity was stimulated by wounding in both wounded and systemic leaves. Peroxidase activity was not affected by wounding. Wounding caused only a transient increase of ethylene production from wounded leaves. The application of regurgitant to wound surfaces stimulated ethylene production as well as activities of peroxidase and polyphenol oxidase in both wounded and systemic leaves. Wounding significantly enhanced ethylene production and polyphenol oxidase activity in wounded and systemic leaves of P. vulgaris . The application of regurgitant caused an amplification of ethylene production, peroxidase activity, and polyphenol oxidase activity, in both wounded and systemic leaves of bean plants. Several substances were tested for their role as possible endogenous signals in P. vulgaris . Hydrogen peroxide and methyl jasmonate appeared as potential local and systemic signals of ethylene formation in wounded bean plants. Local ethylene production in leaf discs was differentially affected by the regurgitant application in potato versus bean plants. While all tested concentrations of regurgitant caused stimulation of ethylene formation from potato leaf discs, ethylene production was completely inhibited by increasing concentrations of the regurgitant in bean leaf discs. Our data present evidence that ethylene may play an important role in the interaction between plants and herbivores at the level of recognition of a particular herbivore leading to specific induction of signalling cascades.  相似文献   

20.
Riov J  Yang SF 《Plant physiology》1982,70(1):136-141
Exogenous ethylene stimulated ethylene production in intact citrus (Citrus sinensis L. Osbeck cv. “Washington Navel”) leaves and leaf discs following a 24-hour exposure. Studies with leaf discs showed that ethylene production decreased when ethylene was removed by aeration. The extent of stimulation was dependent upon the concentration of exogenous ethylene (1-10 microliters per liter). Silver ion blocked the autocatalytic effect of ethylene at concentrations of 0.5 millimolar and lower, but increased ethylene production at higher concentrations. The stimulating effect of ethylene resulted from the enhancement of both 1-aminocyclopropane-1-carboxylic acid (ACC) formation and the conversion of ACC to ethylene. Whereas autocatalysis was evident following 24 hours incubation, autoinhibition of wound- and mannitol-induced ethylene production was observed during the first 24-hour incubation. Ethylene treatment during this period resulted in a marked decrease in ACC levels and ethylene production rates. Furthermore, in leaf discs treated for 24 hours with ethylene, ethylene production rates increased greatly during the first 2 hours after removal of exogenous ethylene by aeration. This increase was eliminated if the discs were transferred to propylene instead of air, indicating that the autocatalytic effect of ethylene is counteracted by its autoinhibitory effect. It is suggested that autocatalysis involves increased synthesis of ACC synthase and the enzyme responsible for the conversion of ACC to ethylene, whereas autoinhibition involves suppression of the activity of these two enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号