首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background  

The fat components of red meat products have been of interest to researchers due to the health aspects of excess fat consumption by humans. We hypothesized that differences in protein expression have an impact on adipose tissue formation during beef cattle development and growth. Therefore, in this study we evaluated the differences in the discernable proteome of subcutaneous adipose tissues of 35 beef crossbred steers [Charolais × Red Angus (CHAR) (n = 13) and Hereford × Angus (HEAN) (n = 22)] with different back fat (BF) thicknesses. The goal was to identify specific protein markers that could be associated with adipose tissue formation in beef cows.  相似文献   

3.
4.
Given the substantial rise in obesity, depot-specific fat accumulation and its associated diseases like diabetes, it is important to understand the molecular basis of depot-specific adipocyte differentiation. Many studies have successfully exploited the adipocyte differentiation, but most of them were not related to depot-specificity, particularly using freshly isolated primary preadipocytes. Using 2-dimensional polyacrylamide gel electrophoresis coupled with sequencing mass spectrometry, we searched and compared the proteins differentially expressed in undifferentiated and differentiated preadipocytes from bovine omental, subcutaneous and intramuscular adipose depots. Our proteome mapping strategy to identify differentially expressed intracellular proteins during adipogenic conversion revealed 65 different proteins that were found to be common for the three depots. Further, we validated the differential expression for a subset of proteins by immunoblotting analyses. The results demonstrated that many structural proteins were down-regulated during differentiation of preadipocytes from all the depots. Most up-regulated proteins like Ubiquinol–cytochrome-c reductase complex core protein I (UQCRC1), ATP synthase D chain, Superoxide dismutase (SOD), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Sulfotransferase 1A1 (SULT1A1), Carnitine O-palmitoyltransferase 2 (CPT2) and Heat-shock protein beta 1 (HSPB1) across the three depots were found to be associated with lipid metabolism and metabolic activity. Further, all the up-regulated proteins were found to have higher protein expression in omental than subcutaneous or intramuscular depots.  相似文献   

5.

Background  

MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle.  相似文献   

6.
JM Romao  W Jin  M He  T McAllister  le L Guan 《PloS one》2012,7(7):e40605

Background

MicroRNAs (miRNAs) are a class of molecular regulators found to participate in numerous biological processes, including adipogenesis in mammals. This study aimed to evaluate the differences of miRNA expression between bovine subcutaneous (backfat) and visceral fat depots (perirenal fat) and the dietary effect on miRNA expression in these fat tissues.

Methodology/Principal Findings

Fat tissues were collected from 16 Hereford×Aberdeen Angus cross bred steers (15.5 month old) fed a high-fat diet (5.85% fat, n = 8) or control diet (1.95% fat, n = 8). Total RNA from each animal was subjected to miRNA microarray analysis using a customized Agilent miRNA microarray containing 672 bovine miRNA probes. Expression of miRNAs was not equal between fat depots as well as diets: 207 miRNAs were detected in both fat depots, while 37 of these were found to be tissue specific; and 169 miRNAs were commonly expressed under two diets while 75 were diet specific. The number of miRNAs detected per animal fed the high fat diet was higher than those fed control diet (p = 0.037 in subcutaneous fat and p = 0.002 visceral fat). Further qRT-PCR analysis confirmed that the expression of some miRNAs was highly influenced by diet (miR-19a, -92a, -92b, -101, -103, -106, -142–5p, and 296) or fat depot (miR-196a and -2454).

Conclusions/Significance

Our results revealed that the miRNA may differ among adipose depots and level of fat in the diet, suggesting that miRNAs may play a role in the regulation of bovine adipogenesis.  相似文献   

7.
8.
The function of adipocytes interspersed between myofiber fasciculi in skeletal muscle physiology and physiopathology is poorly documented. Because regional differences in adipocyte features have been reported in various species, we hypothesized that lipid metabolism and secretory function of intramuscular (IM) adipocytes differ from that of nonmuscular adipocytes. In the present study, adipocytes isolated from trapezius muscle were compared with subcutaneous and perirenal adipocytes in growing pigs. Between 80 and 210 days of age, gene expressions and/or activities of enzymes involved in lipogenesis or lipolysis were much lower (P < 0.05) in adipocytes isolated from muscle than in those from other locations. Insulin-induced lipogenesis and lipolytic efficiency after catecholamine addition were also the lowest (P < 0.05) in IM adipocytes. In these cells, the age-related increase (+300%) in the ratio of mRNA levels of fatty acid synthase to hormone-sensitive lipase paralleled the enlargement of adipocyte diameters (+70%, P < 0.05) and the increase in lipid content in muscle (+135%, P < 0.05) during growth. Expressions of genes coding for leptin, adiponectin, and IGF-I, as well as for various hormonal receptors, were lower (P < 0.05) in IM adipocytes than in other adipocytes, whereas levels of TNF-alpha mRNA did not differ between sites. Interestingly, IGF-II mRNA levels were higher (P < 0.05) in IM adipocytes than in other adipocytes. These data support the view that IM fat is not just an ectopic extension of other fat locations but displays specific biological features during growth.  相似文献   

9.
Recent advances in regenerative medicine have created a broad spectrum of stem cell research. Among them, tissue stem cell regulations are important issues to clarify the molecular mechanism of differentiation. Adipose tissues have been shown to contain abundant preadipocytes, which are multipotent to differentiate into cells including adipocytes, chondrocytes, and osteoblasts. In this study, we have first shown that megakaryocytes and platelets can be generated from adipocyte precursor cells. Human adipocyte precursor cells were cultured in conditioned media for 12 days to differentiate adipocytes, followed by 12 days of culture in media containing thrombopoietin. The ultrastructures of adipocyte precursor cell- and bone marrow CD34-positive cell-derived megakaryocytes and platelets were similar. In addition, adipocyte precursor cell-derived platelets exhibited surface expression of P-selectin and bound fibrinogen upon stimulation with platelet agonists, suggesting that these platelets were functional. This is the first demonstration that human subcutaneous adipocyte precursor cells can generate megakaryocyte and functional platelets in an in vitro culture system.  相似文献   

10.
1. Adipose tissue from Angus and Brahman steers incubated with [1-14C]palmitate in the absence and presence of glucose exhibited a greater rate of lipid production than liver (P < 0.05). 2. Homogenates of adipose tissue used in the glycerol-3-phosphate acyltransferase assay exhibited a greater glycerolipid specific activity (nmol lipid/mg protein/30 min) when compared to liver (P < 0.05). 3. The inverse was true for liver homogenates when calculated for tissue activity (nmol lipid/g tissue/30 min). 4. Lysophosphatidate was produced in greater (P < 0.05) amounts than all other glycerolipids in the glycerol-3-phosphate acyltransferase assay. 5. The activity of phosphatidate phosphohydrolase in liver homogenates displayed greater rates than their respective adipose tissue homogenates. 6. Diacylglycerol acyltransferase activity was greater in adipose tissue homogenates compared to liver homogenates.  相似文献   

11.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p 相似文献   

12.
Stem cells (SCs) vary in morphological, immunophenotypic, proliferative, and differentiation characteristics depending on their tissue source. Comparative analysis of their biological properties is essential for making an optimal SC choice for regenerative therapy. Using immunocytochemistry, flow cytometry, histochemistry, and RT-PCR, we have investigated SCs obtained from human subepicardial (SEC-AT) and subcutaneous (SC-AT) adipose tissues and cultured under similar conditions without any differentiation-promoting factors. The cultures were similar in having a high proportion of proliferating cells positive for nuclear antigen (PCNA). In both cultures, immunophenotyping has revealed high expression of mesenchymal stem-cell surface markers CD29, CD44, CD73, and CD105; low expression of CD31, CD34, and CD45; and variability in CD117, CD146, and CD309 expression. The only difference in the CD marker profile was the significantly lower expression of CD90 in the culture of SCs from SC-AT than from SEC-AT. Histochemical analysis showed a lack of Oil Red O-positive cells in both cultures and an about ten times higher number of alkaline phosphatase-positive cells among SCs from SC-AT. In both cultures, immunocytochemistry detected low expression of the slow myosin heavy chain marker MAB1628 and smooth muscle actin marker α-hSMA. Expression of the gap junction protein connexin-43 was markedly higher in cells from SC-AT cultures. Only the cells of these cultures expressed the epithelial cell marker cytokeratin-19. GATA4 mRNA expression detected with RT-PCR was identified in SEC-AT rather than in SC-AT cells. Our results suggest that SC-AT is enriched compared to SEC-AT with epithelial cell and osteogenic progenitors. In turn, SEC-AT possesses cardiomyogenic SCs and can be considered an alternative source for cell cardiotherapy.  相似文献   

13.
Epidemiological and fetal programming studies point to the role of fetal growth in adult adipose tissue (AT) mass in large mammals. Despite the incidence of fetal AT growth for human health and animal production outcomes, there is still a lack of relevant studies. We determined the cellular and large-scale-molecular features of bovine fetal perirenal AT sampled at 110, 180, 210, and 260 days post-conception (dpc) with the aim of identifying key cellular and molecular events in AT growth. The increase in AT weight from 110 to 260 dpc resulted from an increase in adipocyte volume and particularly adipocyte number that were concomitant with temporal changes in the abundance of 142 proteins revealed by proteomics. At 110 and 180 dpc, we identified proteins such as TCP1, FKBP4, or HSPD1 that may regulate adipocyte precursor proliferation by controlling cell-cycle progression and/or apoptosis or delaying PPARγ-induced differentiation. From 180 dpc, the up-regulation of PPARγ-induced proteins, lipogenic and lipolytic enzymes, and adipokine expression may underpin the differentiation and increase in adipocyte volume. Also from 180 dpc, we unexpectedly observed up-regulations in the β-subunit of ATP synthase, which is normally bypassed in brown AT, as well as in aldehyde dehydrogenases ALDH2 and ALDH9A1, which were predominantly expressed in mouse white AT. These results, together with the observed abundant unilocular adipocytes at 180 and 260 dpc, strongly suggest that fetal bovine perirenal AT has much more in common with white than with brown AT.  相似文献   

14.
15.
16.
Human adipose tissues from the abdomen (subcutaneous), thigh (subcutaneous) and omentum were incubated for 2 h with [35S]methionine. Then glycosylation of lipoprotein lipase (LPL) was analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of endoglycosidase H (endo H)-digested subunits of the 35S-labeled lipase. Adipose tissues from the abdomen, thigh, and omentum all synthesized LPL subunits with Mr = 57,000 composed of two types of subunits. One type was partially endo H-sensitive yielding a product with Mr = 55,000, indicating that it had one endo H-resistant and one endo H-sensitive oligosaccharide chain. The other type of subunit was totally endo H-sensitive yielding a product with Mr = 52,000. Subcutaneous adipose tissues contained nearly equal amounts of partially and totally endo H-sensitive subunits of LPL, whereas omental adipose tissues contained mainly partially endo H-sensitive subunits of LPL.  相似文献   

17.
Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue‐derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31?CD34+CD45?CD90CD105?CD146+ population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31?CD34+CD45?CD90?CD105?CD146? population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood‐derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose‐derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
G J Hausman 《Acta anatomica》1987,128(3):236-242
Perirenal adipose tissue samples were obtained from fetuses removed from pregnant (crossbred) sows at 3 stages of gestation (70, 90 and 110 days). Phosphatase histochemistry, succinate dehydrogenase (SDH) histochemistry and factor VIII antigen immunocytochemistry were conducted on fresh-frozen cryostat sections. Age-associated changes in nucleosidediphosphatase (NDPase) reactions in the arteriolar system were correlated with the morphological development of the medial layer of arterioles and arteries. For instance, a strong NDPase reaction in small arterioles was associated temporally with the assumption of a normal smooth-muscle cell morphology and arrangement in the medial layer. Age-associated changes in blood vessel reactions for factor VIII antigen and alkaline phosphatase activity were not correlated with morphological development. In the youngest fetuses, alkaline phosphatase activity was evident in large and small arterioles, but in the oldest fetuses, alkaline phosphatase activity was restricted to the smallest arterioles and vessels associated with them. Arteriolar differentiation was demonstrable with either adenosine triphosphatase (ATPase) or inosine diphosphatase (IDPase) reactions. Primordial stromal cells around differentiated arterioles were reactive for ATPase but not for IDPase activities. In older fetuses, there were large areas that contained ATPase-reactive stromal cells, no adipocytes, differentiated (ATPase and IDPase) arterioles and few capillaries. Positive reactions for SDH were evident in the ATPase-reactive stromal areas that contained no adipocytes. Differentiated adipocytes were SDH- and ATPase-reactive. These data illustrate the utility of differential phosphatase histochemistry to identify adipose tissue primordia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号