首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Seiler  E. Matzner 《Plant and Soil》1995,176(1):139-147
Our aims were to investigate the spatial variability of throughfall chemistry and soil parameters as influenced by stem distance and to evaluate the implication of the observed systematic and random patterns for the sampling strategy.One hundred throughfall samplers with a sampling area of 106 cm2 each were established in a systematic grid around 5 trees in a mature Norway spruce; site of the Fichtelgebirge (Germany). One hundred soil cores were taken with an auger of 50 cm2 next to the throughfall samplers. Soil samples were stratified according to genetic soil horizons and analysed for pH, exchangeable NH4 +, SO4 2– and total-S. Throughfall samples were collected over a period of 6 months. For each sampler an aliquod sample was mixed over the observation period and analysed for major ions.The spatial variability of the element concentrations in throughfall, expressed by the coefficient of variance, was 21–164%, depending on the element considered. For precipitation volume, the coefficient of variance was only 3%. The distance to the stem influenced most element concentrations in throughfall with increasing concentrations approaching the stem. Steepest gradients were observed in case of SO4 2– and H+.The spatial variability of the investigated soil parameters was also very high with the exception of pH. The SO4 2– content of the forest floor reflected the gradients observed in throughfall, while for the other investigated soil parameters and soil horizons no significant relations to stem distance were found.To determine site representative throughfall concentrations and soil properties with the sample volumes and time intervals we used, the number of samples required to get a statistical error of less than 10% (with 95% probability) can be very high. In case of throughfall, more than 100, and in case of the soil parameters, more than 300 replicates would be required.  相似文献   

2.
Over two hundred samples were collected in tropical headwater forested catchments in the lowland Amazon basin near Juruena, Mato Grosso Brazil. These were analyzed for fluorescence characteristics and DOC concentrations, and represented a range of terrestrial hydrologic flowpaths and first-order streams during baseflow and stormflow conditions. The fluorescence index (FI) of McKnight et al. (2001) was found to have a significant relationship with DOC concentrations for stream water at baseflow conditions, but FI values within individual terrestrial flowpaths and stormflow varied little for the range of DOC concentrations observed. FI values were seen to increase for increasing residence time of water within the terrestrial ecosystem, while DOC concentration decreased for increasing hydrologic residence time. The FI of terrestrial flow paths indicated that DOC became increasingly characterized by microbially derived carbon for flow paths with longer residence times, on the order through fall and overland flow < percolating soil water < groundwater. Base flow samples of stream water had a mean FI value of 1.78, compared with 1.51 and 1.44 for through fall and overland flow, respectively, and 1.65 for percolating soil water. The FI values for stream water at base flow were also seen to vary seasonally, and were inversely proportional to DOC concentrations over time.  相似文献   

3.
4.
5.
Abstract

The bioavailability index (BI) is defined as the proportion of reduction in a plant’s accumulation of an element, caused by the removal of the extractable fraction of the element of interest from the soil. The BI and corresponding experimental methods were quantitatively applied to evaluate the bioavailability of trace elements in five Chinese soils. The soil was first extracted with various reagents (DTPA, HCl and NH2OH.HCI) separately, to remove the extractable elements. The soil, after extraction, was washed with deionised water to eliminate the extractant used in the fractionation analysis. Then the pH of the soil was re-adjusted with CaO. The soil was then fertilised and incubated in a greenhouse for four weeks. Tests showed that after incubation the pH, cation exchange capacity (CEC) and organic matter (OM) of the treated soil were close to their original values. Wheat (Triticum aestivum L.) was planted in both the untreated and treated soil for eight weeks. After harvest the plant concentrations of the elements Cr, Mn, Co, Ni, Zn, Cu, Cd, and Pb were analysed by inductively coupled plasma mass spectrometry (ICPMS). Trace element accumulation by plants grown in the treated soil was reduced significantly compared with that of plants grown in the untreated soil. The results showed that BI values were in the order BI(DTPA)>BI(HCl)>BI(NH2OH.HCl). This indicated that the DTPA-extractable fraction represented a highly available fraction of the total content. Variations of BI among different trace elements show that Cr, Mn, Zn and Co have a higher BI, in general for the elements tested, whereas, Cu, Cd and Pb have lower values. There are also slight differences in the BI among soils. However, no significant relationship could be found between the BI and the soil characteristics.  相似文献   

6.
To evaluate the potential of the indigenous plant species for Arsenic (As) phytoremediation, a total of 138 plant samples and 138 soil samples from rooting zones were collected from two As-contaminated areas in Kurdistan, western Iran. The areas were the Sari Gunay Gold Mine (SG) and Ali Abad Village (AA). The soil of both areas naturally contains As, with mining activities at SG. Soil and plant samples were collected at five sites in the SG (SG1 to SG5) and at two sites in the AA (AA1 and AA2). Soil samples were analyzed for total and water-soluble As concentration, as well as for the main soil physical and chemical properties such as electrical conductivity (Ec), pH, organic carbon (Corg.), available phosphorus (Pava.), and soil texture. Plant samples were analyzed for As concentration in their shoots and roots.

The average total and water–soluble As concentrations in soil were 751.6 and 6.2 ppm at SG and 920.8 and 8.0 ppm at AA, respectively. The highest root and shoot As concentration was found in Juncus inflexus (751.5 ppm) at AA2 and in Astragalus gossypinus (158.7 ppm) at AA1, respectively. With regard to phytoremediation strategies, Acantholimon brachystachyum, Astragalus gossypinus, Stipa barbata, and Ephedra major with a high translocation factor (TF) can be potentially used for As phytoextraction. However, Juncus inflexus, Phragmites australis, Bromus tomentellus, and Elymus sp., which show high bioconcentration factor (BCF) and low TF, are suggested as good candidates for As phytostabilization. In general, the TF values of terrestrial plants were higher than those of amphibious plants; meanwhile, BCF values showed the opposite behavior.  相似文献   


7.
Y. Lundell 《Plant and Soil》1987,98(3):363-375
Summary This study was carried out in order to assess the importance of storage procedures and time of sampling for the results of routine chemical analyses of forest soils. Humus and mineral soil samples were collected at five-week intervals during two growing seasons from a sample plot in a coniferous forest in northern Sweden. The samples were either air-dried (+35°C) or frozen (−20°C). After a few months they were analysed for ‘easily available’ and ‘relatively available’ phosphorus (P-AL and P-HCl) and potassium (K-AL and K-HCl), ammonium, nitrate and pH. In some cases there was a significant difference between the two sample treatments. In humus, the concentrations of P-AL and NH4-N were 51% and 76% higher in samples which had been frozen than in those which had been air-dried while the concentrations of NO3-N were 75% higher. in air-dried than in frozen samples. In mineral soil samples, 21–64% higher concentrations of K-AL were found in frozen samples compared to air-dried and 80–427% higher concentrations of NO3-N in air-dried than in frozen samples. No distinct seasonal variations were found for any of the parameters.  相似文献   

8.
Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration. However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05). Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEAC:P) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEAC:N) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEAC:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.  相似文献   

9.
The crucial role of seabirds in the enrichment of nutrient-poor polar terrestrial ecosystem is well-known. However, no studies have examined the potentially different impacts associated with piscivorous and planktivorous bird colonies on the surrounding tundra soils. Therefore, we compared guano deposition and physical and chemical parameters of soil near two large seabird colonies, one of planktivorous little auks (Alle alle) and the other comprising piscivorous Brunnich’s guillemots (Uria lomvia) and kittiwakes (Rissa tridactyla). The two colonies generated similar levels of guano deposition, with the intensity of deposition decreasing away from the colony. Guano deposition adjacent to both colonies was considerably higher than that in control areas. The increased guano supply around colonies significantly enhanced soil conductivity, nitrogen (NO3 ?, NH4 +), potassium (K+), and phosphate (PO4 3?) ion concentrations and led to reduced pH values. Guano deposition explained 84 % (piscivorous colony) and 67 % (planktivorous colony) of the total variation in the tested soil parameters. Planktivore and piscivore colonies affected adjacent tundra in different ways. The phosphate content and pH value of soil influenced by piscivores were significantly higher than values measured in planktivore-influenced soil. The gradient of guano deposition and associated ion content in the soil decreased more rapidly with distance from the piscivore colony. Climate-induced changes in populations of planktivorous and piscivorous seabirds are expected in the study region and may therefore have substantial consequential effects on Arctic terrestrial ecosystems.  相似文献   

10.
The activity concentrations of radionuclides in grape molasses soil samples collected from Zile (Tokat) plain in the Central Black Sea region of Turkey were measured by using gamma spectrometer with a NaI(Tl) detector. Also, the concentrations of 222Rn in soil samples and air were estimated essentially taking the activity concentrations of 226Ra measured in soil samples. Grape molasses soil samples with calcium carbonate content are used for sedimentation for making molasses in this region. The average activity concentrations of 232Th, 226Ra, 40K, and 137Cs were found as 62 ± 2, 68 ± 3, 479 ± 35, and 8.0 ± 0.3 Bq kg?1, respectively. The average concentrations of 222Rn in soil samples and air were estimated to be 50 kBq m?3 and 144 Bq m?3. From the activity concentrations, absorbed gamma dose rate in outdoor air (D), annual effective dose from external exposure (EE), annual effective dose from inhalation of radon (EI), and excess lifetime cancer risk (ELCR) were estimated in order to assess radiological risks. The average values of D, EE, EI, and ELCR were found to be 90 nGy h?1, 110 μSv y?1, 1360 μSv y?1, and 4 × 10?4, respectively.  相似文献   

11.
This study was done to evaluate heavy metal concentrations in street dust samples, to compare measured concentrations in samples to background concentrations in order to make evaluations for pollution indices, and to describe the quality of street dust in the studied area in relation to pollution. A total of 30 cumulative samples were collected from the streets of Eslamshahr City. Concentrations of heavy metals were determined using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results determined mean concentrations (mg/kg) of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn, in collected samples of street dust as 0.34, 35.1, 239, 42.4, 71.3, and 573, respectively. Igeo values for Cd and Cr, Cu, Ni, Pb, and Zn showed level of moderately polluted, unpolluted, moderately to strongly polluted, unpolluted, moderately polluted and moderately to strongly polluted, respectively. The pattern of total metal concentrations in the studied area was ranked as follows: Zn and Cu>Pb>Cd>Ni>Cr. The highest values for the monomial potential ecological risk (Er) were observed for Cd (114). The mean level of RI for the studied soil samples was 192 (91.3–244), which is classed as presenting a strong potential ecological risk.  相似文献   

12.
Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine‐scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild‐caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small‐bodied wild terrestrial salamander populations.  相似文献   

13.
Forest fragmentation in tropical ecosystems can alter nutrient cycling in diverse ways. We have analysed the effects of the forest-pasture edge on nutrient soil dynamics in a tropical deciduous forest (TDF) in Mexico. In two remnant forest fragments, both larger than 10 ha, litterfall, litter and soil samples associated to the tree Caesalpinia eriostachys were collected at five distances from the pasture edge into the inner forest (10 m in the pasture and 0–10, 30–40, 70–80 and 100–110 m towards the forest interior). We measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in litterfall, surface litter and soil, and soil microbial C (Cmic) and microbial N (Nmic). Soil nutrient concentrations and Cmic and Nmic were lower in the pasture soils than in the forest soil samples. Total C and N pools, and Cmic and Nmic in the pasture were lower than in the forest. In contrast, net N immobilization and the increase in Nmic from rain to dry season increased from the edge to the inner forest. Soil P concentration was lower in the pasture and at the first distance class in the forest margin (0–10 m) than in the sites located further into the forest, while litter P concentration had the inverse pattern. Litterfall P was also reduced near the edge and increased towards the forest interior. As a consequence, litterfall C:P and N:P ratios decreased from the edge to the inner forest. These results suggest that the forest–pasture edge disrupts P dynamics within the first 10 m in the forest. Thus, plants' use of nutrients and productivity could be altered in the edge of fragmented forests.  相似文献   

14.
Necrosols are a unique category of anthropogenic soils that are associated with excavated cemeteries or graveyards. In spite of the growing number of cemeteries and burial sites found across urban and rural areas globally, scientific information regarding the contamination potential of this category of soils is relatively scarce and not properly understood. The purpose of this study is to fill this gap by assessing the contamination significance of trace metal contents in the necrosols associated with two excavated mass graves in Rwanda. For this preliminary geochemical investigation, cemetery soil samples were collected from two excavated mass graves in the Murambi memorial site, Rwanda, and analyzed for trace and major element concentrations. The enrichment factor (EF), chemical index of alteration (CIA), and contamination status of necrosol samples was determined in comparison with the offsite area. The results revealed that the average EF values for both onsite and offsite samples were generally within the class of natural background with only six onsite samples having higher EF values than the offsite or background area. Possible reasons for the progressive depletion of the selected trace element onsite are the relatively low anthropogenic activities and higher weathering intensity of the necrosols in comparison with the background area over time. Even though the mean onsite CIA values for the necrosols were slightly higher than the background area, the index further confirmed that both the necrosols and offsite samples were significantly altered to kaolinic degree. From the resulting pollution index values (PI Nemerow), it can be inferred that the Murambi necrosols were within the range of 0.84 and 1.82, corresponding to the precaution and slightly polluted domain. The current contamination status of the necrosols is likely to have been caused as a result of the anthropogenic input of Cr and Pb onsite relative to the offsite area.  相似文献   

15.
This study investigated the concentrations of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshwater source lakes in Pakistan and assessed the preliminary health risks associated with them. Water samples were collected from Khanpur and Simly Lakes and analyzed for the metals using flame atomic absorption spectrophotometry. Major contributions were noted for Ca, K, Mg, and K; however, the measured levels of Cd, Co, Cr, and Pb were many times higher than the permissible national/international guideline values. The risk characterization revealed that hazard quotient (HQing) and hazard index (HIing) values exceeded the acceptable limit unity, indicating non-carcinogenic risk to the recipients via oral intake of contaminated water. The carcinogenic risk (CRing) via ingestion route for Cd, Cr, and Pb was found much greater than the acceptable limit (10–6). Overall, Cd, Co, Cr, and Pb were the major contributors to potential adverse health risk to the inhabitants. Multivariate analysis demonstrated anthropogenic intrusions of the metals in both lakes. The study clearly indicated that there was gross contamination of water in both lakes, so special attention should be paid to manage the pollution sources of metals.  相似文献   

16.
Trace elements in soils exist as components of several different fractions. We have analyzed the correlation between total and extractable (EDTA, calcium chloride and deionized water) Zn, Pb and Cu concentrations in soils and the concentration of these elements in plant leaves. Soil and plant samples have been taken from Sulcis-Iglesiente (Sardinia), an area rich in mining tailings. This has made that the concentrations of the trace element under study in soils were varied. Three plants have been studied: Dittrichia viscosa, Cistus salviifolius, and Euphorbia pithyusa subsp. cupanii. Soil samples beneath each of them at depths of 0–30 and 30–60 cm have been considered. The highest concentration of trace elements in the leaves of the studied species has been found for Zn. The calcium carbonate content and the crystalline and amorphous forms of iron in the soil have determined the concentration of metal in plant leaves. The soil concentrations that have been found with the extraction methods are uncorrelated with Pb and Cu concentrations in plants, but Zn is correlated with the fraction extracted with EDTA and calcium chloride. The concentrations of trace metals in plants are most closely related to the soil contents of CaCO3, electrical conductivity, Feox, and Fedc.  相似文献   

17.
Aim Agroforestry systems incorporating N‐fixing trees have been shown to be socially beneficial and are thought to be environmentally friendly, both enriching and stabilizing soil. However, the effect of such systems on the emissions of the important greenhouse gas nitrous oxide (N2O) and the tropospheric ozone precursor nitric oxide (NO) is largely unknown. Location Soil was collected from the research plots of Institut Sénégalais de Recherches Agricoles at Bandia and Bambey, Senegal, West Africa, and from neighbouring farmers’ fields. Trace gas flux measurements and chemical analysis of the soil were carried out at the Centre for Ecology and Hydrology (CEH), Edinburgh, UK. Methods Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured following simulated rainfall events (10 and 20 mm equivalents) from repacked soil cores collected under two tree species (Acacia raddiana) and Eucalyptus camaldulensis) in each of two provenance trails. In addition, soil samples were collected in local fields growing peanut (Arachis hypogaea) and Sorghum (Sorghum vulgare), close to the species trials in Bambey. NO was measured using a flow through system and was analysed by chemiluminescence. Nitrous oxide was measured from the repacked soil core headspace and was analysed by electron capture gas chromatography. Soil mineral N was extracted with KCl and analysed by colorimetric methods on separate soil columns. Results Light rainfall, which increased the gravimetric soil moisture content to 20%, stimulated an increase in NO emission but there was no detectable N2O emission. A heavy rainfall event, which increased the gravimetric soil moisture to 30%, stimulated N2O emission with a subsequent peak in NO emissions when the soils became drier. Soil collected under the N‐fixing tree species emitted significantly more N2O than soil collected under the N‐fixing crop species (P < 0.01). NO and N2O emissions significantly correlated with soil available N (NH4 and NO3) (P < 0.05). Main conclusions Rainfall intensity, supply of mineral N from organic matter and N fixation were the prime drivers of NO and N2O emissions from seasonally dry tropical soils. The improved soil fertility underneath the trees provided a larger pool of mineral N and yielded larger rates of NO and N2O emissions.  相似文献   

18.
The importance of soil organic matter (SOM) in the global carbon (C) cycle has been highlighted by many studies, but the way in which SOM stabilization processes and chemical composition affect decomposition rates under natural climatic conditions is not yet well understood. To relate the temperature sensitivity of heterotrophic soil respiration to the decomposition potential of SOM, we compared temperature sensitivities of respiration rates from a 2-year long soil translocation experiment from four elevations along a ~3000 m tropical forest gradient. We determined SOM stabilization mechanisms and the molecular structure of soil C from different horizons collected before and after the translocation. Soil samples were analysed by physical fractionation procedures, 13C nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimetry (DSC). The temperature sensitivity (Q 10) of heterotrophic soil respiration at the four sites along the elevation transect did not correlate with either the available amount of SOM or its chemical structure. Only the relative distribution of C into physical soil fractions correlated with Q 10 values. We therefore conclude that physical fractionation of soil samples is the most appropriate way to assess the temperature sensitivity of SOM.  相似文献   

19.
Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays.  相似文献   

20.
Urbanization and anthropogenic activities are the major source of environmental pollution which may cause damage in terrestrial ecosystems and their organisms. Toxic elements can accumulate in soil and leave tissue; thus, through the food chain they can accumulate in predatory organisms. The aim of our study was to investigate the effects of urbanization on toxic element concentration in soil, leaf litter and Carabus violaceus and Pterostichus oblongopunctatus specimens along an urbanization gradient. The studied predator species were common and their distribution is widespread along the urbanization gradient. Soil, leaf litter and ground beetles were collected from three forested area: urban park, suburban forest and rural forest. The following toxic element concentrations were analyzed in all samples: Al, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Sr and Zn. In the soil there was no significant difference in toxic element concentration between areas, except in seasons. Significantly higher toxic element concentration was found in autumn than in spring in the soil. In the case of leaf litter we found significant differences between areas in the following toxic elements: Ba, Cu, Mn, Sr and Zn. The concentrations of all elements were significantly higher in autumn than in spring. Significantly higher concentration was found in P. oblongopunctatus specimens than in C. violaceus for all studied elements, except Sr. We found significant differences in elemental concentrations between sexes in both species. Significantly higher Cu and Pb concentration was found in male beetles than in female ones. Just the opposite was true for the Sr concentration. We found positive correlation between toxic element concentration of C. violaceus and leaf litter for Mn and Zn. Negative correlations were found between toxic elements of ground beetles and soil for Al, Ba, Fe, Sr and Zn. Our study confirms that different breeding strategies and sexes cause differences in the accumulation of toxic elements. In summary, we demonstrated that ground beetles, leaf litter and soil were suitable bioindicators for monitoring the effects of urbanization and anthropogenic activities on terrestrial ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号