首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many plants produce latex, a specialized, metabolically active cytoplasm. This is generally regarded as a defensive trait but latex may also possess additional functions. We investigated the role of latex in the dandelion species Taraxacum brevicorniculatum that contains considerable amounts of high-quality natural rubber by carrying out a comprehensive analysis of the latex proteome. We developed reliable protocols for the preparation of protein samples for one-dimensional gel electrophoresis, two-dimensional gel electrophoresis, and subsequent mass spectrometry analysis, which led to 278 unique identifications. A gene ontology classification system based on comparisons with known Arabidopsis thaliana root proteins showed that dandelion proteins involved in lipid metabolism and transport were enriched in the latex proteome, whereas those involved in stress responses were not. We also found that proteins involved in rubber biosynthesis were distributed among different fractions of the latex proteome.  相似文献   

2.
Commercially, lettuce (Lactuca sativa) is one of the most important leafy vegetables. Lettuce produces a milky latex of variable chemical compositions within its laticifers. As a step toward understanding the main physiological roles of this latex in higher plants, we embarked on its proteomic analysis. We investigated 587 latex proteins that were identified from the lettuce latex using multidimensional protein-identification technology. A bioinformatics analysis showed that the most frequently encountered proteins in the latex were organellar proteins from plastids and mitochondria, followed by nucleic and cytoplasmic proteins. Functional classification of the identified proteins showed that proteins related to metabolism, cell rescue, defense, and virulence were the most abundant in lettuce latex. Furthermore, numerous resistance proteins of lettuce and viral proteins were present in the latex suggesting for the first time a possible function of the lettuce latex in defense or pathogenesis. To the knowledge of the authors, this is the first large-scale proteome analysis of lettuce latex.  相似文献   

3.
Got milk? The secret life of laticifers   总被引:1,自引:0,他引:1  
Laticifers are specialized cells that occur in over 20 plant families in several unrelated angiosperm orders. Although laticifers are likely to be of polyphyletic origin, their occurrence is considered a morphological indicator of relatedness among species. The classification of laticifers is based on developmental patterns and overall morphology. The cytoplasmic latex exuded in response to damage often includes specialized metabolites, such as cardenolides, alkaloids and natural rubber. Laticifers provide an effective location to store defense metabolites, although not all latex-bearing plants accumulate bioactive natural products. Ecophysiological studies have shown that latex and its associated metabolites are vital for the defense of plants against insects. The anatomy, development and physiology of laticifers are discussed with a focus on evolutionary and ecological perspectives.  相似文献   

4.
Being sessile, plants are subjected to a diverse array of environmental stresses during their life span. Exposure of plants to environmental stresses results in the generation of reactive oxygen species (ROS). These activated oxygen species tend to oxidize various cellular biomolecules like proteins, nucleic acids, and lipids, a process that challenges the core existence of the cell. To prevent the accumulation of these ROS and to sustain their own survival, plants have developed an intricate antioxidative defence system. The antioxidative defence system comprises various enzymatic and nonenzymatic molecules, produced to counter the adverse effect of environmental stresses. A sizable number of these molecules belong to the category of compounds called secondary metabolites. Secondary metabolites are organic compounds that are not directly involved in the growth and development of plants but perform specialized functions under a given set of conditions. Absence of secondary metabolites results in long-term impairment of the plant’s survivability. Such compounds generally include pigments, phenolics, and so on. Plant phenolic compounds such as flavonoids and lignin precursors have been reported to accumulate in response to various biotic and abiotic stresses and are regarded as crucial defence compounds that can scavenge harmful ROS. Another important category of plant metabolites, called brassinosteroids, exhibit stress regulatory and growth-promoting activity and are classified as phytohormones. Elucidation of the physiological and molecular effects of secondary metabolites and brassinosteroids have catapulted them as highly promising and environment-friendly natural substances, suitable for wider application in plant protection and crop yield promotion. The present review focuses on our current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.  相似文献   

5.
Among latex-producing plants, mainly the latex of Hevea brasiliensis has been studied in detail so far, while comprehensive comparative studies of latex coagulation mechanisms among the more than 20,000 latex-bearing plant species are lacking. In order to give new insights into the potential variety of coagulation mechanisms, the untreated natural latices of five latex-bearing plants from the families Euphorbiaceae, Moraceae and Campanulaceae were visualised using Cryo-SEM and their particle size compared using the laser diffraction method. Additionally, the laticifers of these plants species were examined in planta via Cryo-SEM. Similar latex particle sizes and shape were found in Ficus benjamina and Hevea brasiliensis. Hence, and due to other similarities, we hypothesize comparable, mainly chemical, coagulation mechanisms in these two species, whereas a physical coagulation mechanism is proposed for the latex of Euphorbia spp. The latter mechanism is based on the huge amount of densely packed particles that after evaporation of water build a large surface area, which accelerates the coagulation procedure.  相似文献   

6.
Konno K 《Phytochemistry》2011,72(13):1510-11416
Plant latex and other exudates are saps that are exuded from the points of plant damage caused either mechanically or by insect herbivory. Although many (ca. 10%) of plant species exude latex or exudates, and although the defensive roles of plant latex against herbivorous insects have long been suggested by several studies, the detailed roles and functions of various latex ingredients, proteins and chemicals, in anti-herbivore plant defenses have not been well documented despite the wide occurrence of latex in the plant kingdom. Recently, however, substantial progress has been made. Several latex proteins, including cysteine proteases and chitin-related proteins, have been shown to play important defensive roles against insect herbivory. In the mulberry (Morus spp.)-silkworm (Bombyx mori) interaction, an old and well-known model system of plant-insect interaction, plant latex and its ingredients - sugar-mimic alkaloids and defense protein MLX56 - are found to play key roles. Complicated molecular interactions between Apocynaceae species and its specialist herbivores, in which cardenolides and defense proteins in latex play key roles, are becoming more and more evident. Emerging observations suggested that plant latex, analogous to animal venom, is a treasury of useful defense proteins and chemicals that has evolved through interspecific interactions. On the other hand, specialist herbivores developed sophisticated adaptations, either molecular, physiological, or behavioral, against latex-borne defenses. The existence of various adaptations in specialist herbivores itself is evidence that latex and its ingredients function as defenses at least against generalists. Here, we review molecular and structural mechanisms, ecological roles, and evolutionary aspects of plant latex as a general defense against insect herbivory and we discuss, from recent studies, the unique characteristics of latex-borne defense systems as transport systems of defense substances are discussed based on recent studies.  相似文献   

7.
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, and phenolic compounds. Secondary metabolites have various functions including protection against pathogens and UV light in plants, and have been used as natural medicines for humans utilizing their diverse biological activities. Many of these natural compounds are accumulated in a particular compartment such as vacuoles, and some are even translocated from source cells to sink organs via long distance transport. Both primary and secondary transporters are involved in such compartmentation and translocation, and many transporter genes, especially genes belonging to the multidrug and toxin extrusion type transporter family, which consists of 56 members in Arabidopsis, have been identified as responsible for the membrane transport of secondary metabolites. Better understandings of these transporters as well as the biosynthetic genes of secondary metabolites will be important for metabolic engineering aiming to increase the production of commercially valuable secondary metabolites in plant cells.  相似文献   

8.
Many plants contain latex that exudes when leaves are damaged, and a number of proteins and enzymes have been found in it. The roles of those latex proteins and enzymes are as yet poorly understood. We found that papain, a cysteine protease in latex of the Papaya tree (Carica papaya, Caricaceae), is a crucial factor in the defense of the papaya tree against lepidopteran larvae such as oligophagous Samia ricini (Saturniidae) and two notorious polyphagous pests, Mamestra brassicae (Noctuidae) and Spodoptera litura (Noctuidae). Leaves of a number of laticiferous plants, including papaya and a wild fig, Ficus virgata (Moraceae), showed strong toxicity and growth inhibition against lepidopteran larvae, though no apparent toxic factors from these species have been reported. When the latex was washed off, the leaves of these lactiferous plants lost toxicity. Latexes of both papaya and the wild fig were rich in cysteine-protease activity. E-64, a cysteine protease-specific inhibitor, completely deprived the leaves of toxicity when painted on the surface of papaya and fig leaves. Cysteine proteases, such as papain, ficin, and bromelain, all showed toxicity. The results suggest that plant latex and the proteins in it, cysteine proteases in particular, provide plants with a general defense mechanism against herbivorous insects.  相似文献   

9.
10.
11.
Lettuce is an economically important leafy vegetable that accumulates a milk-like sap called latex in the laticifer. Previously, we conducted a large-scale lettuce latex proteomic analysis. However, the identified proteins were obtained only from lettuce ESTs and proteins deposited in NCBI databases. To extend the number of known latex proteins, we carried out an analysis identifying 302 additional proteins that were matched to the NCBI non-redundant protein database. Interestingly, the newly identified proteins were not recovered from lettuce EST and protein databases, indicating the usefulness of this hetero system in MudPIT analysis. Gene ontology studies revealed that the newly identified latex proteins are involved in many processes, including many metabolic pathways, binding functions, stress responses, developmental processes, protein metabolism, transport and signal transduction. Application of the non-redundant plant protein database led to the identification of an increased number of latex proteins. These newly identified latex proteins provide a rich source of information for laticifer research.  相似文献   

12.
Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.  相似文献   

13.
Myxobacteria are potent producers of secondary metabolites exhibiting diverse biological activities and pharmacological potential. The proteome of Myxococcus xanthus DK1622 was characterized by two-dimensional chromatographic separation of tryptic peptides from a lysate followed by tandem mass spectrometric identification. The high degree of orthogonality of the separation system employing polymer-based strong cation-exchange and monolithic reversed-phase stationary phases was clearly demonstrated. Upon automated database searching, 1312 unique peptides were identified, which were associated with 631 unique proteins. High-molecular polyketide synthetases and nonribosomal peptide synthetases, known to be involved in the biosynthesis of various secondary metabolites, were readily detected. Besides the identification of gene products associated with the production of known secondary metabolites, proteins could also be identified for six gene clusters, for which no biosynthetic product has been known so far.  相似文献   

14.
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.  相似文献   

15.
The plant plasma membrane is a crucial mediator of the interaction between plants and microbes. Understanding how the plasma membrane proteome responds to diverse immune signaling events will lead to a greater understanding of plant immunity and uncover novel targets for crop improvement. Here we report the results from a large scale quantitative proteomics study of plasma membrane-enriched fractions upon activation of the Arabidopsis thaliana immune receptor RPS2. More than 2300 proteins were identified in total, with 1353 proteins reproducibly identified across multiple replications. Label-free spectral counting was employed to quantify the relative protein abundance between different treatment samples. Over 20% of up-regulated proteins have known roles in plant immune responses. Significantly changing proteins include those involved in calcium and lipid signaling, membrane transport, primary and secondary metabolism, protein phosphorylation, redox homeostasis, and vesicle trafficking. A subset of differentially regulated proteins was independently validated during bacterial infection. This study presents the largest quantitative proteomics data set of plant immunity to date and provides a framework for understanding global plasma membrane proteome dynamics during plant immune responses.  相似文献   

16.
The mulberry (Morus spp.)-silkworm (Bombyx mori) relationship has been a well-known plant-herbivore interaction for thousands of years. Recently, we found that mulberry leaves defend against insect herbivory by latex ingredients. Here we report that a 56-kDa (394 amino acid) defense protein in mulberry latex designated mulatexin (MLX56) with an extensin domain, two hevein-like chitin-binding domains, and an inactive chitinase-like domain provides mulberry trees with strong insect resistance. MLX56 is toxic to lepidopteran caterpillars, including the cabbage armyworm, Mamestra brassicae and the Eri silkworm, Samia ricini, at 0.01% concentration in a wet diet, suggesting that MLX56 is applicable for plant protection. MLX56 is highly resistant to protease digestion, and has a strong chitin-binding activity. Interestingly, MLX56 showed no toxicity to B. mori, suggesting that the mulberry specialist has developed adaptation to the mulberry defense. Our results show that defensive proteins in plant latex play key roles in mulberry-insect interactions, and probably also in other plant-insect interactions. Our results further suggest that plant latexes analogous to animal venom contain a treasury of applicable defense proteins and chemicals that has evolved through inter-specific interactions.  相似文献   

17.
18.
Drought is the primary limitation to plant growth and yield in agricultural systems. Cucumber (Cucumis sativus) is one of the most important vegetables worldwide and has little tolerance for water deficit. To understand the drought stress response strategy of this plant, the responses of cucumber to short‐term drought and rewatering were determined in this study by morphological structure and proteomic analyses. The leaf relative water content was significantly decreased under drought, and the cell structure was altered, while rewatering obviously alleviated the symptoms of water shortage and cell damage. A total of 320 and 246 proteins exhibiting significant abundance changes in response to drought and recovery, respectively, were identified. Our proteome analysis showed that 63 co‐regulated proteins were shared between drought and rewatering, whereas most of the responsive proteins were unique. The proteome is adjusted through a sequence of regulatory processes including the biosynthesis of secondary metabolites and the glutathione metabolism pathway, which showed a high correlation between protein abundance profile and corresponding enzyme activity. Drought and recovery regulated different types of proteins, allowing plants to adapt to environmental stress or restore growth, respectively, which suggests that short‐term drought and recovery are almost fully uncoupled processes. As an important component of the antioxidant system in plants, glutathione metabolism may be one of the main strategies for regulating antioxidant capacity during drought recovery. Our results provide useful information for further analyses of drought adaptability in cucumber plants.  相似文献   

19.
Large-scale analysis of the human ubiquitin-related proteome   总被引:1,自引:0,他引:1  
Protein ubiquitylation contributes to the regulation of many cellular processes including protein degradation, receptor internalization, and repair of DNA damage. We now present a comprehensive characterization of ubiquitin-conjugated and ubiquitin-associated proteins in human cells. The proteins were purified by immunoaffinity chromatography under denaturing or native conditions. They were then digested with trypsin, and the resulting peptides were analyzed by 2-D LC and MS/MS. A total of 670 distinct proteins were identified; 345 proteins (51%) were classified as Urp-D (ubiquitin-related proteome under the denaturing condition) and comprised ubiquitin-conjugated molecules, whereas 325 proteins (49%) were classified as Urp-N (ubiquitin-related proteome only under the native condition) and included molecules that associated with ubiquitylated proteins. The proportions of proteins in various functional categories differed substantially between Urp-D and Urp-N. Many ribosomal subunits were detected in the Urp-D group of proteins and several of these subunits were directly shown to be ubiquitylated by mass spectrometric analysis, suggesting that ubiquitylation might play an important role in the regulation and/or quality control of ribosomal proteins. Our results demonstrate the potential of proteomics analysis of protein ubiquitylation to provide important insight into the regulation of protein stability and other ubiquitin-related cellular functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号