共查询到20条相似文献,搜索用时 15 毫秒
1.
Preusting H van Houten R Hoefs A van Langenberghe EK Favre-Bulle O Witholt B 《Biotechnology and bioengineering》1993,41(5):550-556
Pseudomonas oleovorans is able to accumulate poly(3-hydroxyalkanoates) (PHAs) under conditions of excess n-alkanes, which serve as sole energy and carbon source, and limitation of an essential nutrient such as ammonium. In this study we aimed at an efficient production of these PHAs by growing P. oleovorans to high cell densities in fed-batch cultures.To examine the efficiency of our reactor system, P. oleovorans was first grown in batch cultures using n-octane as growth substrate and ammonia water for pH regulation to prevent ammonium limiting conditions. When cell growth ceased due to oxygen limiting conditions, a maximum cell density of 27 g .L(-1) dry weight was obtained. When the growth temperature was decreased from the optimal temperature of 30 degrees -18 degrees C, cell growth continued to a final cell density of 35 g . L(-1) due to a lower oxygen demand of the cells at this lower incubation temperature.To quantify mass transfer rates in our reactor system, the volumetric oxygen transfer coefficient (k(L)a) was determined during growth of P. oleovorans on n-octane. Since the stirrer speed and airflow were increased during growth of the organism, the k(L)a also increased, reaching a constant value of 0.49 s(-1) at maximum airflow and stirrer speed of 2 L . min(-1) and 2500 rpm, respectively. This k(L)a value suggests that oxygen transfer is very efficient in our stirred tank reactor.Using these conditions of high oxygen transfer rates, PHA production by P. oleovorans in fed-batch cultures was studied. The cells were first grown batchwise to a density of 6 g . L(-1), after which a nutrient feed, consisting of (NH(4))(2)SO(4) and MgSO(4), was started. The limiting nutrient ammonium was added at a constant rate of 0.23 g NH(4) (+) per hour, and when after 38 h the feed was stopped, a biomass concentration of 37.1 g . L(-1) was obtained. The Cellular PHA content was 33% (w/w), which is equal to a final PHA yield of 12.1 g . L(-1) and an overall PHA productivity of 0.25 g PHA produced per liter medium per hour. (c) 1993 John Wiley & Sons, Inc. 相似文献
2.
Poly(3-hydroxyalkanoates) (PHA) have the potential to become a biodegradable alternative for conventional plastics. In order to produce PHA at competitive costs in comparison with commonly used plastics, efficient PHA production systems will have to be developed. Poly(3-hydroxybutyrate) fermentations are well developed and in actual use on an industrial scale; medium-chain-length PHA (mcl-PHA) production is less well described, although the vast majority of all PHA known today are mcl-PHA. This paper compares and describes mcl-PHA production systems with respect to the volumetric productivity, the cellular PHA content and the polymer yield on carbon substrates. Nitrogen was shown to be the most effective limitation to trigger PHA formation in P. oleovorans after different nutrient limitations had been compared. By using an economic model for the calculation of PHA production costs, we show that it should be possible to produce octane-based mcl-PHA on a large scale (more than 1000 tonnes/year) at costs below U.S. $ 10 kg−1. Received: 4 April 1997 / Accepted: 20 May 1997 相似文献
3.
Pseudomonas oleovorans forms medium-chain-length poly(3-hydroxyalkanoate) (PHA) most effectively at growth rates below the maximum specific growth rate. Under adequate conditions, PHA accumulates in inclusion bodies in cells up to levels higher than half of the cell mass, which is a time-consuming process. For PHA production, a two-stage continuous cultivation system with two fermentors connected in series is a potentially useful system. It offers production of cells at a specific growth rate in a first compartment at conditions that lead cells to generate PHA at higher rates in a second compartment, with a relatively long residence time. In such a system, dilution rates of 0.21 h(-1) in the first fermentor (D(1)) and 0.16 h(-1) in the second fermentor (D(2)) were found to yield the highest volumetric PHA productivity. Transient-state experiments allowed investigation of D(1) and D(2) over a wide dilution rate range at high resolution in time-saving experiments. Furthermore, the influence of temperature, pH, nutrient limitation, and carbon source on PHA productivity was investigated and results similar to optimum conditions in single-stage chemostat cultivations of P. oleovorans were found. With all culture parameters optimized, a volumetric PHA productivity of 1.06 g L(-1) h(-1) was determined. Under these conditions, P. oleovorans cells contained 63% (dry weight) PHA in the effluent of the second fermentor. This is the highest PHA productivity and PHA content reported thus far for P. oleovorans cultures grown on alkanes. 相似文献
4.
Pseudomonas oleovorans is capable of producing poly(3-hydroxyalkanoates) (PHAs) as intracellular storage material. To analyze the possible involvement of phaD in medium-chain-length (MCL) PHA biosynthesis, we generated a phaD knockout mutant by homologous recombination. Upon disruption of the phaD gene, MCL PHA polymer accumulation was decreased. The PHA granule size was reduced, and the number of granules inside the cell was increased. Furthermore, mutant cells appeared to be smaller than wild-type cells. Investigation of MCL PHA granules revealed that the pattern of granule-associated proteins was changed and that the predominant protein PhaI was missing in the mutant. Complementation of the mutant with a phaD-harboring plasmid partially restored the wild-type characteristics of MCL PHA production and fully restored the granule and cell sizes. Furthermore, PhaI was attached to the granules of the complemented mutant. These results indicate that the phaD gene encodes a protein which plays an important role in MCL PHA biosynthesis. However, although its main effect seems to be the stabilization of MCL PHA granules, we found that the PhaD protein is not a major granule-associated protein and therefore might act by an unknown mechanism involving the PhaI protein. 相似文献
5.
K Nakamura Y Got? N Yoshie Y Inoue R Ch?j? 《International journal of biological macromolecules》1992,14(2):117-118
A series of copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) was biosynthesized by Alcaligenes eutrophus from an amino acid, threonine. The 3HV content of these polyesters ranged from less than 0.1% to 30%. 相似文献
6.
Gern N. M. Huijberts Hetty van der Wal Clare Wilkinson Gerrit Eggink 《Biotechnology Techniques》1994,8(3):187-192
Summary The accuracy and reproducibility of the gas-chromatographic method for the analysis of PHB and PHA in whole cells of Alcaligenes eutrophus H16 and Pseudomonas putida KT2442 were determined. It was found that for analysis of PHA the methanolysis time in the assay had to be increased to 4 h. Accuracy of the PHB and PHA assay were 0.018 mg and 0.304 mg respectively, based on estimation of the measurement error. 相似文献
7.
A recombinant Escherichia coli strain XL1-Blue harboring a stable high-copy-number plasmid pSYL107 containing the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes and the Escherichia coli ftsZ gene was employed for the production of poly(3-hydroxybutyrate) (PHB) by fed-batch culture in a defined medium. Suppression of filamentation by overexpressing the cell division protein FtsZ allowed production of PHB to a high concentration (77 g/L) with high productivity (2 g/L/h) in a defined medium, which was not possible with the recombinant E. coli that underwent filamentation. Further optimization of fed-batch culture condition resulted in PHB concentration of 104 g/L in a defined medium, which was the highest value reported to date by employing recombinant E. coli. 相似文献
8.
9.
The three dimensional solubility parameters defined by Hansen are based on dispersion forces between structural units, interaction between polar groups and hydrogen bonding. For polar polymers such as poly(3-hydroxyalkanoates), P(3HA), this approach was used to obtain the three coordinates of a solubility parameter in terms of: a dispersion part, a polar part and a hydrogen bonding part. Thirty-eight different solvents for poly(3-hydroxybutyrate), PHB, which are mentioned in the literature are examined by this method and the theoretical predictions are compared with the experimental reports. Another overall comparison between PHA polymers provides their Hansen and Hildebrand parameters for side chain lengths up to C13. In this series a linear progression in calculated solubility parameters with side chain length was found. An Appendix provides information and data on calculation of the solubility parameters. While the solubility information is limited and only covers homopolymers, it should help to highlight some of the contradictions regarding PHB solubility. This semi-empirical approach is only valid for amorphous polymers hence crystallinity effects, which are important with PHB, as well as molecular weight effects still require analysis. 相似文献
10.
Comamonas testosteroni has been studied for its ability to synthesize and accumulate medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) during cultivation on vegetable oils available in the local market. Castor seed oil, coconut oil, mustard oil, cotton seed oil, groundnut oil, olive oil and sesame oil were supplemented in the mineral medium as a sole source of carbon for growth and PHAs accumulation. The composition of PHAs was analysed by a coupled gas chromatography/mass spectroscopy (GC/MS). PHAs contained C6 to C14 3-hydroxy acids, with a strong presence of 3-hydroxyoctanoate when coconut oil, mustard oil, cotton seed oil and groundnut oil were supplied. 3-hydroxydecanoate was incorporated at higher concentrations when castor seed oil, olive oil and sesame oil were the substrates. Purified PHAs samples were characterized by Fourier Transform Infrared (FTIR) and 13C NMR analysis. During cultivation on various vegetable oils, C. testosteroni accumulated PHAs up to 78.5-87.5% of the cellular dry material (CDM). The efficiency of the culture to convert oil to PHAs ranged from 53.1% to 58.3% for different vegetable oils. Further more, the composition of the PHAs formed was not found to be substrate dependent as PHAs obtained from C. testosteroni during growth on variety of vegetable oils showed similar compositions; 3-hydroxyoctanoic acid and/or 3-hydroxydecanoic acid being always predominant. The polymerizing system of C. testosteroni showed higher preference for C8 and C10 monomers as longer and smaller monomers were incorporated less efficiently. 相似文献
11.
Helmut Brandl Richard A. Gross Robert W. Lenz Ramona Lloyd R. Clinton Fuller 《Archives of microbiology》1991,155(4):337-340
In recent years industrial interest has been focussed on the evaluation of poly(3-hydroxyalkanoates) (PHA) as potentially biodegradable plastics for a wide range of technical applications. Studies have been carried out in order to optimize growth and culture conditions for the intracellular formation of PHA in the phototrophic, purple, non-sulfur bacterium Rhodobacter sphaeroides. Its potential to produce polyesters other than poly(3-hydroxybutyrate) (PHB) was investigated. On an industrial scale, the use of photosynthetic bacteria could harness sunlight as an energy source for the production of these materials. R. sphaeroides was grown anaerobically in the light on different carbon sources. Under nitrogenlimiting conditions a PHA content of up to 60 to 70% of the cellular dry weight was detected. In all of the cases studied, the storage polymer contained approximately 98 mol% of 3-hydroxybutyrate (HB) and 2 mol% 3-hydroxyvalerate (HV) monomer units. Decreasing light intensities did not stimulate PHA formation. Compared to Rhodospirillum rubrum (another member of the family of Rhodospirillaceae), R. sphaeroides showed a limited flexibility in its ability to form PHA with varying monomer unit compositions. 相似文献
12.
Takeshi Imamura Takashi Kenmoku Tsutomu Honma Shin Kobayashi Tetsuya Yano 《International journal of biological macromolecules》2001,29(4-5):295-301
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas cichorii YN2 cultured with C6–C12 1-alkenes was studied. PHAs containing repeating units with terminal epoxide groups were obtained when C7–C12 1-alkenes were fed separately as the only carbon source, but no epoxidized unit was detected when 1-hexene was fed. The content of epoxidized units in the polymers was in the range of 4–20 mol%, which was not dependent on the C atom length of the 1-alkene used as a substrate. The polymers produced undergo a glass transition at around −40 °C, and number average molecular weights were in the range of 1 50 000–2 00 000 as determined by GPC relative to polystyrene, with Mw/Mn ratios of 1.9–2.5. As an intermediate, the corresponding 1,2-epoxyalkane was found in the culture medium. According to this result, the epoxidation of the 1-alkene is the initial step in the synthetic pathway of the epoxy unit in the polymer. 相似文献
13.
Matsui T Sato H Yamamuro H Misawa S Shinzato N Matsuda H Takahashi J Sato S 《Journal of biotechnology》2008,134(1-2):88-92
A synthetic medium, TK-25, for high cell density cultivation (HCDC) of Escherichia coli K-12 was modified to support HCDC of strain JM109. By optimizing the culture conditions, the cell concentration of 65 g/l in 14 h was obtained in the optimized medium, namely TK-10, with glucose-fed batch cultivation. When these conditions were further applied for HCDC of E. coli JM109 harboring pUC-based recombinant plasmid which expresses a hirudin variant, HV-1-fused protein under the control of trp promoter, it grew to 24 g/l of dried cells expressed as an inclusion body as 15.9% of the total protein, corresponding to 1908 mg/l hirudin-fused protein. 相似文献
14.
Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria 总被引:6,自引:0,他引:6
Matthias Liebergesell Eilert Hustede Arnulf Timm Alexander Steinbüchel R. Clinton Fuller Robert W. Lenz Hans G. Schlegel 《Archives of microbiology》1991,155(5):415-421
The formation of poly(3-hydroxyalkanoic acid), PHA, by various strains of chemolithotrophic and phototrophic bacteria has
been examined. Chemolithotrophic bacteria were grown aerobically under nitrogen-limiting conditions on various aliphatic organic
acids. Phototrophic bacteria were grown anaerobically in the light on a nitrogen-rich medium and were subsequently transferred
to a nitrogen-free medium containing acetate, propionate, valerate, heptanoate or octanoate as carbon source. All 41 strains
investigated in this study were able to synthesize and accumulate PHA. All 11 strains of chemolithotrophic bacteria and all
15 strains belonging to the non-sulfur purple bacteria synthesized a polymer, which contained 3-hydroxy-valerate (3HV) beside
3-hydroxybutyrate (3HB), if the cells were cultivated in the presence of propionate, valerate or heptanoate. Many non-sulfur
purple bacteria synthesized copolyesters of 3HB and 3HV even with acetate as carbon source. In contrast, most sulfur purple
bacteria did not incorporate 3HV at all. Among 15 strains tested, only Chromatium vinosum strain 1611, C. purpuratum strain BN5500 and Lamprocystis roseopersicina strain 3112 were able to synthesize polyesters containing 3HV with propionate, valerate or heptanoate as carbon source. 相似文献
15.
Klinke S Dauner M Scott G Kessler B Witholt B 《Applied and environmental microbiology》2000,66(3):909-913
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant. 相似文献
16.
The triacylglycerol (TAG)-accumulating bacterium Rhodococcus opacus strain PD630 was investigated with respect to the fermentative production of TAGs consisting of an unusually high fraction of fatty acids with an odd-number of carbon atoms and unsaturated monoenic fatty acids from sugar beet molasses and sucrose. Fed-batch fermentations were optimized at the 30-1 scale in a stirred tank bioreactor at 30 degrees C using a mineral salts medium, which contained sugar beet molasses and sucrose as sole carbon sources. Approximately 37.5 g cell dry matter (CDM) per liter was the highest cell density that was obtained at that scale with a TAG content in the cells of 52%. This fermentative process was also applied to a 500-1 pilot-plant scale. Cell densities as high as 18.4 g CDM per liter were obtained, and 42% of the sucrose present in the medium was converted into cell mass which consisted of 38.4% TAGs. 相似文献
17.
The thermal degradation of the biodegradable bacterial polyesters poly(3-hydroxybutyrate), PHB, poly(3-hydroxyvalerate), PHV, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), 0-21 mol % of hydroxyvalerate, was studied. At moderately low temperatures (170-200 degrees C), the main product is a well-defined oligomer, especially a 500-10,000 g/mol macromolecule, which contains one unsaturated end group, predominantly a trans-alkenyl end group, as well as a carboxylic end group. The process was studied regarding the effect of the copolymer composition and reaction time at 190 degrees C. During the first few hours of reaction, the thermal degradation of PHB and PHV followed a kinetic model of random scission, but eventually auto-acceleration of the pyrolysis was detected, probably due to the influence of the crotonate end groups of the oligomers formed. Ten-time scale-up experiments on a Brabender instrument were successfully undertaken. 相似文献
18.
G W Huisman E Wonink R Meima B Kazemier P Terpstra B Witholt 《The Journal of biological chemistry》1991,266(4):2191-2198
Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information for PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings. 相似文献
19.
Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains 总被引:1,自引:0,他引:1
Gjalt W. Huisman Eric Wonink Gertjan de Koning Hans Preusting Bernard Witholt 《Applied microbiology and biotechnology》1992,38(1):1-5
We have studied the accumulation kinetics and physical characteristics of the poly(3-hydroxyalkanoates) (PHAs) formed by several Pseudomonas strains, mutants and recombinants. Although PHA synthesis generally begins only after an essential nutrient such as N, P, S or Mg becomes limiting, we have identified at least one strain (P. putida KT2442) that begins producing PHA during the exponential growth phase. This PHA is chemically and physically identical to that produced by P. oleovorans GPol, the strain in which we first identified PHA. Analysis of the PHA formed by a mutant strain defective in PHA degradation (P. oleovorans GPo500) revealed that the molecular mass (Mw), the monomer composition and thermal characteristics were similar to that of the PHA of the wild-type parent strain P. oleovorans GPo1. The pha locus of P. oleovorans encodes enzymes that are involved in PHA biosynthesis and degradation. It has been subcloned to study the two PHA polymerases separately in a PHA– mutant (GPp104) derived from P. putida KT2442. The recombinant strains accumulated lower PHA levels than the wild-type strains, and the Mw of these polymers were lower than those produced by the wild-type P. oleovorans and parent strain. The monomer composition of the two PHAs formed by the two PHA polymerases differed, indicating that the PHA polymerases have different substrate specificities for the incorporation of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers into PHA. Despite these differences, the PHAs formed were essentially indistinguishable from wild-type PHAs with respect to their thermal characteristics.Correspondence to: B. Witholt 相似文献
20.
Longan Shang Min Jiang Zhi Yun Hong-Qiang Yan Ho-Nam Chang 《World journal of microbiology & biotechnology》2008,24(12):2783-2787
A novel biopolyester, Medium-Chain-Length Polyhydroxyalkanoates (MCL-PHAs), was made from the corn oil hydrolysate, an inexpensive and renewable carbon source, by a fed-batch culture of Pseudomonas putida with a phosphate limitation. The cell growth, MCL-PHAs accumulation and feeding strategies of corn oil hydrolysate in the cultures of P. putida were investigated in 5 l and 30 l fermentors respectively. In the optimal fermentation, the final cell and MCL-PHAs concentrations reached 103 and 28 g/l, which represents a MCL-PHAs productivity of 0.61 g/l h. It was confirmed by its NMR spectrum that this MCL-PHAs from corn oil hydrolysate contained 4 saturated and 3 unsaturated monomers with a chain length of 6–14 carbon atoms. 相似文献