首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.  相似文献   

2.
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.  相似文献   

3.
3-Chloropyrocatechol is formed as a result of oxidation of 2-chlorobenzoate byPseudomonas stutzeri. 2-Chloro-cis,cis-muconic acid is the product of oxidation of 3-chloropyrocatechol. A catabolic pathway for the degradation of 2-chlorobenzoate by a newly isolated strain ofP. stutzeri is proposed.  相似文献   

4.
Maleylacetoacetate cis-trans isomerase together with glutathione has been found to isomerize cis-trans isomers of monomethyl muconate. Isomerization about a single double bond and concerted double isomerization of the diene unit occurs. In addition to the variations in substrate structure previously identified the current results demonstrate that a cis,cis diene skeleton and a conjugated ester function are accepted by the enzyme. The present work and the fiding of trans,trans-muconic acid in the urine of benzene-fed mice ([16.] Xenobiotica 15, 211) suggest that maleylacetoacetate cis-trans isomerase may be responsible for the geometrical isomerization. However, cis,cis-muconaldehydic acid rather than cis,cis-muconic acid is suggested to be the early intermediate in benzene metabolism capable of rapid enzyme-catalyzed cis-trans isomerization.  相似文献   

5.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

6.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

7.
Benzene was metabolized by Rhodococcus sp. 33 through the intradiol cleavage (ortho-) pathway producing cis-benzene glycol, catechol and cis, cis-muconic acid as the intermediates. This is the first elucidation of the pathway by which benzene is degraded by a gram-positive organism. The enzyme assays have also suggested that Rhodococcus 33 does not have a fully functional tricarboxylic acid cycle but may have an operational glyoxylate bypass.  相似文献   

8.
For enhancement ofcis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion tocis,cis-muconate) was cloned and expressed in recombinantPseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM),cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the case of wildtypeP. putida BM014, whereascis,cis-muconate productivity continuously increased and catechol was completely transformed tocis,cis-muconate forP. putida BCM114. Specific C12O activity ofP. putida BCM114 was about three times higher than that ofP. putida BM014, and productivity was enhanced more than two times.  相似文献   

9.
3-Chlorobenzoate-grown cells of Pseudomonas sp. B13 readily cometabolized monofluorobenzoates. A catabolic pathway for the isomeric fluorobenzoates is proposed on the basis of key metabolites isolated. Only 4-fluorobenzoate was utilized and totally degraded after a short period of adaptation. The isoenzymes for total degradation of chlorocatechols, being found during growth with 3-chlorobenzoate or 4-chlorophenol, were not induced in the presence of fluorobenzoates. Correspondingly, only the ordinary enzymes of the benzoate pathway were detected in 4-fluorobenzoate-grown cells. Ring cleavage of 3-fluorocatechol was recognized as a critical step in 3-fluorobenzoate degradation. 2-Fluoro-cis,cis-muconic acid was identified as a dead-end metabolite from 2- and 3-fluorobenzoate catabolism. During 2-fluorobenzoate cometabolism, fluoride is eliminated by the initial dioxygenation.  相似文献   

10.
Muconate cycloisomerases play a crucial role in the bacterial degradation of aromatic compounds by converting cis,cis-muconate, the product of catechol ring cleavage, to (4S)-muconolactone. Chloromuconate cycloisomerases catalyze both the corresponding reaction and a dehalogenation reaction in the transformation of chloroaromatic compounds. This study reports the first thorough examination of the substrate specificity of the muconate cycloisomerases from Pseudomonas putida PRS2000 and Acinetobacter calcoaceticus” ADP1. We show that they transform, in addition to cis,cis-muconate, 3-fluoro-, 2-methyl-, and 3-methyl-cis,cis-muconate with high specificity constants but not 2-fluoro-, 2-chloro-, 3-chloro-, or 2,4-dichloro-cis,cis-muconate. Based on known three-dimensional structures, variants of P. putida muconate cycloisomerase were constructed by site-directed mutagenesis to contain amino acids found in equivalent positions in chloromuconate cycloisomerases. Some of the variants had significantly increased specificity constants for 3-chloro- or 2,4-dichloromuconate (e.g., A271S and I54V showed 27- and 22-fold increases, respectively, for the former substrate). These kinetic improvements were not accompanied by a change from protoanemonin to cis,cis-dienelactone as the product of 3-chloro-cis,cis-muconate conversion. The rate of 2-chloro-cis,cis-muconate turnover was not significantly improved, nor was this compound dehalogenated to any significant extent. However, the direction of 2-chloro-cis,cis-muconate cycloisomerization could be influenced by amino acid exchange. While the wild-type enzyme discriminated only slightly between the two possible cycloisomerization directions, some of the enzyme variants showed a strong preference for either (+)-2-chloro- or (+)-5-chloromuconolactone formation. These results show that the different catalytic characteristics of muconate and chloromuconate cycloisomerases are due to a number of features that can be changed independently of each other.  相似文献   

11.
首次将胞外邻苯二酚1,2-双加氧酶固定化,并用于制备顺,顺—己二烯二酸.该固定化酶表观活力高,使用范围扩大,耐酸性及耐碱性都有显著提高,并且使用稳定性好,得到的产物浓度及纯度均较高,酶与产物容易分离,整个工艺简单、独特、新颖,有利于工业化应用.  相似文献   

12.
The metabolic pathway of aniline was examined in Rhodococcus erythropolis AN-13 that was isolated from soil when aniline was provided as a sole source of carbon and nitrogen. cis, cis-Muconic acid and β-ketoadipic acid were detected by thin-layer chromatography in an incubation mixture containing aniline and resting cells of this strain. These two carboxylic acids were also formed from catechol, when the substrate was incubated with cell-free extract of aniline-grown cells, and characterized spectrally as crystalline samples. Ammonia was released from aniline by resting cells. The cell-free extract of aniline-grown cells had a strong catechol 1,2-dioxygenase activity. Catechol, once formed from aniline, was apparently converted so rapidly to cis, cis-muconic acid that it could not be isolated. These results suggest that R. erythropolis AN-13 converted aniline to catechol with the release of ammonia and then mineralized catechol ultimately to inorganic end products, H2O and CO2, through the β ketoadipic acid pathway.  相似文献   

13.
4-Chroropyrocatechol is formed as a results of the oxidation of 2,5-dichlorobenzoate byPseudomonas stutzeri. 3-Chloro-cis,cis-muconic acid is the product of the oxidation of 4-chloropyrocatechol. Pyrocatechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, but not pyrocatechol 2,3-dioxygenase or protocatechuate 3,4-dioxygenase activities were found in cell-free extracts. Theortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catablic pathway for the degradation of 2,5-dichlorobenzoate by a newly isolated strain ofP. stutzeri was proposed.  相似文献   

14.
Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69   总被引:6,自引:3,他引:3       下载免费PDF全文
Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid.  相似文献   

15.
Resveratrol is a plant secondary metabolite with multiple health-beneficial properties. Microbial production of resveratrol in model microorganisms requires extensive engineering to reach commercially viable levels. Here, we explored the potential of the non-conventional yeast Yarrowia lipolytica to produce resveratrol and several other shikimate pathway-derived metabolites (p-coumaric acid, cis,cis-muconic acid, and salicylic acid). The Y. lipolytica strain expressing a heterologous pathway produced 52.1 ± 1.2 mg/L resveratrol in a small-scale cultivation. The titer increased to 409.0 ± 1.2 mg/L when the strain was further engineered with feedback-insensitive alleles of the key genes in the shikimate pathway and with five additional copies of the heterologous biosynthetic genes. In controlled fed-batch bioreactor, the strain produced 12.4 ± 0.3 g/L resveratrol, the highest reported titer to date for de novo resveratrol production, with a yield on glucose of 54.4 ± 1.6 mg/g and a productivity of 0.14 ± 0.01 g/L/h. The study showed that Y. lipolytica is an attractive host organism for the production of resveratrol and possibly other shikimate-pathway derived metabolites.  相似文献   

16.
Trans,trans-, cis,trans- and cis,cis-diferulic acids were released from cell walls of Lolium multiflorum by treatment with sodium hydroxide. The isomers were apparently bound via ester links to the structural carbohydrates of the cell walls. Sodium hydroxide treatment gave, per g of wall, 0.18 mg trans,trans-diferulic, 0.02 mg cis,trans-diferulic and a trace of cis,cis-diferulic acids compared with 5.3 mg trans-ferulic, 1.2 mg cis-ferulic, 0.78 mg trans-p-coumaric and 0.12 mg cis-p-coumaric acids. The significance of these acids in lignin biosynthesis is discussed. The effect of UV light on the trans,trans isomer and its fully silylated trimethylsilyl either derivative was also investigated.  相似文献   

17.
Synthetic biology enables the production of small molecules by recombinant microbes for pharma, food, and materials applications. The secretion of products reduces the cost of separation and purification, but it is challenging to engineer due to the limited understanding of the transporter proteins' functions. Here we describe a method for genome-wide transporter disruption that, in combination with a metabolite biosensor, enables the identification of transporters impacting the production of a given target metabolite in yeast Saccharomyces cerevisiae. We applied the method to study the transport of xenobiotic compounds, cis,cis-muconic acid (CCM), protocatechuic acid (PCA), and betaxanthins. We found 22 transporters that influenced the production of CCM or PCA. The transporter of the 12-spanner drug:H(+) antiporter (DHA1) family Tpo2p was further confirmed to import CCM and PCA in Xenopus expression assays. We also identified three transporter proteins (Qdr1p, Qdr2p, and Apl1p) involved in betaxanthins transport. In summary, the described method enables high-throughput transporter identification for small molecules in cell factories.  相似文献   

18.
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.  相似文献   

19.
Investigations of the unicellular marine cyanobacterium Synechococcus PCC 7002 revealed its ability to metabolize phenol under non-photosynthetic conditions up to 100 mg L–1. Under continuous light, photoautotrophic growth was reduced only slightly in the presence of this phenol concentration, but no transformation was observed. However neither under photoautotrophic nor heterotrophic conditions were the cells able to use phenol for growth. During the degradation of phenol in the dark cis,cis-muconic acid was produced as the major product, which was identified by gas chromatography/mass spectrometry. This result was confirmed by an identical absorption spectrum and an identical retention time in high performance liquid chromatographic analysis with authentic muconic acid as standard. This provides the first record for an ortho-fission of a phenolic substance by cyanobacteria. Further investigations of the breakdown mechanism of phenol have shown that the transformation is an extracellular process inhibited by heat, proteases and metal ions and is probably catalyzed by a protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号