首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pan B  Mitra SN  Sundaralingam M 《Biochemistry》1999,38(9):2826-2831
G.A mispairs are one of the most common noncanonical structural motifs of RNA. The 1.9 A resolution crystal structure of the RNA 16-mer r(GCAGAGUUAAAUCUGC)2 has been determined with two isolated or nonadjacent G.A mispairs. The molecule crystallizes with one duplex in the asymmetric unit in space group R3 and unit cell dimensions a = b = c = 49.24 A and alpha = beta = gamma = 51.2 degrees. It is the longest known oligonucleotide duplex at this resolution and isomorphous to the 16-mer duplex with the C.A+ mispairs [Pan, et al., (1998) J. Mol. Biol. 283, 977-984]. The C.A+ mispair behaves like a wobble pair while the G.A+ does not. The G.A mispairs are protonated at N1 of the adenines as in the C.A+ mispairs, and two hydrogen bonds in the G(syn).A+(anti) conformation are formed. The syn guanine is stabilized by an intranucleotide hydrogen bond between the 2-amino and the 5'-phosphate groups. The G(syn).A+(anti) conformation can provide a different surface for recognition in the grooves compared to other G.A hydrogen bonding schemes. The major groove is widened between the two mispairs allowing access to ligands. One of the 3-fold axes is occupied by a sodium ion and a water molecule, while a second is occupied by another water molecule.  相似文献   

2.
The synthetic dodecanucleotide d(CGCAAATTGGCG) has been analysed by single-crystal X-ray diffraction techniques and the structure refined to R = 0.16 and 2.25 A resolution, with the location of 94 solvent molecules. The sequence crystallizes as a full turn of a B-DNA helix with ten Watson-Crick base-pairs and two adenine-guanine mispairs. The analysis clearly shows that the mismatches are of the form A(anti).G(syn). Thermal denaturation studies indicate that the stability of the duplex is strongly pH dependent, with a maximum at pH 5.0, suggesting that the base-pair is stabilized by protonation. Three different arrangements have been observed for base-pairs between guanine and adenine and it is likely that A.G mismatch conformation is strongly influenced by dipole-dipole interactions with adjacent base-pairs.  相似文献   

3.
A series of self-complementary dodecanucleotide duplexes containing two symmetrically disposed mismatches have been studied by pH-dependent, ultraviolet light melting techniques. The results indicate that A.C, and C.C mismatches are strongly stabilized by protonation and that the degree of stabilization of the A.C mismatch depends greatly on the flanking bases. In one case, a duplex containing two A.C mismatches is more stable than the native sequence below pH 5.5. The G.A mismatch displays conformational flexibility, with a protonated G(syn).A(anti) base-pair occurring in certain base stacking environments but not in others. The A.A and T.C mismatches are not stabilized at low pH. These solution studies correlate well with predictions based on X-ray crystallographic data.  相似文献   

4.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

5.
Inosine.adenine base pairs in a B-DNA duplex.   总被引:13,自引:12,他引:1       下载免费PDF全文
The structure of the synthetic deoxydodecamer d(C-G-C-I-A-A-T-T-A-G-C-G) has been determined by single crystal X-ray diffraction techniques at 2.5A resolution. The refinement converged with a crystallographic residual, R = 0.19 and the location of 64 solvent molecules. The sequence crystallises as a B-DNA helix with 10 Watson-Crick base-pairs (4 A.T. and 6 G.C) and 2 inosine.adenine (I.A) pairs. The present work shows that in the purine.purine base-pairs the adenine adopts syn orientation with respect to the furanose moiety while the inosine is in the trans (anti) orientation. Two hydrogen bonds link the I.A. base-pair, one between N-1(I) and N-7(A), the other between O-6(I) and N-6(A). This bulky purine.purine base-pair is incorporated in the double helix at two positions with little distortion of either local or global conformation. The pairing observed in this study is presented as a model for I.A base-pairs in RNA codon-anticodon interactions and may help explain the thermodynamic stability of inosine containing base-pairs. Conformational parameters and base stacking interactions are presented and where appropriate compared with those of the native compound, d(C-G-C-G-A-A-T-T-C-G-C-G) and with other studies of oligonucleotides containing purine.purine base-pairs.  相似文献   

6.
Proton and phosphorus two-dimensional NMR studies are reported for the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) nonanucleotide duplex (designated X.A 9-mer) that contains a 1,N2-propanodeoxyguanosine exocyclic adduct, X5, opposite deoxyadenosine A14 in the center of the helix. The NMR studies detect a pH-dependent conformational transition; this paper focuses on the structure present at pH 5.8. The two-dimensional NOESY studies of the X.A 9-mer duplex in H2O and D2O solution establish that X5 adopts a syn orientation while A14 adopts an anti orientation about the glycosidic bond at the lesion site. The large downfield shift of the amino protons of A14 demonstrates protonation of the deoxyadenosine base at pH 5.8 such that the protonated X5(syn).A14(anti) pair is stabilized by two hydrogen bonds at low pH. At pH 5.8, the observed NOE between the H8 proton of X5 and the H2 proton of A14 in the X.A 9-mer duplex demonstrates unequivocally the formation of the protonated X5(syn).A14(anti) pair. The 1,N2-propano bridge of X5(syn) is located in the major groove. Selective NOEs from the exocyclic methylene protons of X5 to the major groove H8 proton of flanking G4 but not G6 of the G4-X5-G6 segment provide additional structural constraints on the local conformation at the lesion site. A perturbation in the phosphodiester backbone is detected at the C13-A14 phosphorus located at the lesion site by 31P NMR spectroscopy. The two-dimensional NMR studies have been extended to the related complementary X.G 9-mer duplex that contains a central X5.G14 lesion in a sequence that is otherwise identical with the X.A 9-mer duplex. The NMR experimental parameters are consistent with formation of a pH-independent X5(syn).G14(anti) pair stabilized by two hydrogen bonds with the 1,N2-propano exocyclic adduct of X5(syn) located in the major groove.  相似文献   

7.
The structure of the synthetic dodecamer d(CGCAAATTGGCG) has been shown by single crystal X-ray diffraction methods to be that of a B-DNA helix containing two A(anti).G(syn) base pairs. The refinement, based on data to a resolution of 2.25 A shows that the mismatch base pairs are held together by two hydrogen bonds. The syn-conformation of the guanine base of the mismatch is stabilised by hydrogen bonding to a network of solvent molecules in both the major and minor grooves. A pH-dependent ultraviolet melting study indicates that the duplex is stabilised by protonation, suggesting that the bases of the A.G mispair are present in their most common tautomeric forms and that the N(1)-atom of adenine is protonated. The structure refinement shows that there is some disorder in the sugar-phosphate backbone.  相似文献   

8.
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs.  相似文献   

9.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

10.
Using nuclear magnetic resonance line broadening, longitudinal relaxation and magnetization transfer from water, we have measured the imino proton exchange times in the duplex form of the 10-mer d-CGCGATCGCG and in seven other deoxy-duplexes, as a function of the concentration of exchange catalysts, principally ammonia. All exchange times are catalyst dependent. Base-pair lifetimes are obtained by extrapolation to infinite concentration of ammonia. Lifetimes of internal base-pairs are in the range of milliseconds at 35 degrees C and ten times more at 0 degrees C. Lifetimes of neighboring pairs are different, hence base-pairs open one at a time. Lifetimes of d(G.C) are about three times longer than those of d(A.T). The nature of neighbors usually has little effect, but lifetime anomalies that may be related to sequence and/or structure have been observed. In contrast, there is no anomaly in the A.T base-pair lifetimes of d-CGCGA[TA]5TCGCG, a model duplex of poly[d(A-T)].poly[d(A-T)]. The d(A.T) lifetimes are comparable to those of r(A.U) that we reported previously. End effects on base-pair lifetimes are limited to two base-pairs. The low efficiency of exchange catalysts is ascribed to the small dissociation constant of the deoxy base-pairs, and helps to explain why exchange catalysis had been overlooked in the past. This resulted in a hundredfold overestimation of base-pair lifetimes. Cytosine amino proteins have been studied in the duplex of d-CGm5CGCG. Exchange from the closed base-pair is indicated. Hence, the use of an amino exchange rate to evaluate the base-pair dissociation constant would result in erroneous, overestimated values. Catalyzed imino proton exchange is at this time the safest and most powerful, if not the only probe of base-pair kinetics. We propose that the single base-pair opening event characterized here may be the only mode of base-pair disruption, at temperatures well below the melting transition.  相似文献   

11.
Solution structure of an oncogenic DNA duplex containing a G.A mismatch   总被引:7,自引:0,他引:7  
The DNA duplex 5'-d(GCCACAAGCTC).d(GAGCTGGTGGC), which contains a central G.A mismatch has been studied by one and two-dimensional NMR techniques. The duplex corresponds to the sequence 29-39 of the K-ras gene. The mismatch position is that of the first base of the Gly12 codon, a hot spot for mutations. The observed NOEs of the nonexchangeable protons show that both of the bases of the mismatched pair are intrahelical over a wide range of pH. However, the structure of the G.A mispair and the conformation of the central part of the duplex change with pH. This structural change shows a pK of 6.0. At low pH, the G.A bases are base paired with hydrogen bonds between the keto group of the G residue and the amino group of the A residue and, secondly, between the N7 of the G and a proton on N1 of A. This causes the G residue to adopt a syn conformation. On raising the pH, the N1-H proton of the protonated A residue is removed, and the base pair rearranges. In the neutral G.A base pair both residues adopt an anti conformation, and the mismatch is stabilized by hydrogen bonds. Our results on the exchangeable and A(H2) protons of the mismatched pair indicate a shift from a classical face-to-face two hydrogen-bonded structure to a slipped structure stabilized by bifurcated hydrogen bonds. This may be a particular characteristics of this oncogenic sequence in which the G.A error is poorly repaired.  相似文献   

12.
The structure of d(CGCGm4CG) were m4C = N4-methylcytosine has been determined by crystallographic methods. The crystals are multifaced prisms, with orthorhombic space group P2(1)2(1)2(1) and unit cell dimensions of a = 17.98, b = 30.77 and c = 44.75A. The asymmetric unit consists of one duplex of hexanucleotide and 49 waters. The R-factor is 0.189 for 1495 reflections with F > or = sigma(F) to a resolution limit of 1.8A. The double helix has a Z-DNA type structure which appears to be intermediate in structure to the two previously characterised structure types for Z-DNA hexamers. The two m4C.G base-pairs adopt structures that are very similar to those of the equivalent base-pairs in the structure of the native sequence d(CGCGCG) except for the presence of the methyl groups which are trans to the N3 atoms of their parent nucleotides and protrude into the solvent region. The introduction of the modified base-pairs into the d(CGCGCG) duplex appears to have a minimal effect on the overall base-pair morphology of the Z-DNA duplex.  相似文献   

13.
Deoxyguanosine residues are hydroxylated by reactive oxygen species at the C-8 position to form 8-hydroxy-2'-deoxyguanosine (8-OG), one of the most important mutagenic lesions in DNA. Though the spontaneous G:C to C:G transversions are rare events, the pathways leading to this mutation are not established. An 8-OG:G mispair, if not corrected by DNA repair enzymes, could lead to G:C to C:G transversions. NMR spectroscopy and restrained molecular dynamics calculations are used to refine the solution structure of the base mismatch formed by the 8-OG:G pair on a self complementary DNA dodecamer duplex d(CGCGAATT(8-O)GGCG)(2). The results reveal that the 8-OG base is inserted into the helix and forms Hoogsteen base-pairing with the G on the opposite strand. The 8-OG:G base-pairs are seen to be stabilized by two hydrogen bonding interactions, one between the H7 of the 8-OG and the O6 of the G, and a three-center hydrogen bonding between the O8 of the 8-OG and the imino and amino protons of the G. The 8-OG:G base-pairs are very well stacked between the Watson-Crick base-paired flanking bases. Both strands of the DNA duplex adopt right-handed conformations. All of the unmodified bases, including the G at the lesion site, adopt anti glycosidic torsion angles and form Watson-Crick base-pairs. At the lesion site, the 8-OG residues adopt syn conformations. The structural studies demonstrate that 8-OG(syn):G(anti) forms a stable pair in the interior of the duplex, providing a basis for the in vivo incorporation of G opposite 8-OG. Calculated helical parameters and backbone torsional angles, and the observed 31P chemical shifts, indicate that the structure of the duplex is perturbed near lesion sites, with the local unwinding of the double helix. The melting temperature of the 8-OG:G containing duplex is only 2.6 deg. C less than the t(m) of the unmodified duplex.  相似文献   

14.
Single-residue d(Pu1NPu2) (Pu1.Pu2=G.A, G.G or A.A) hairpin loops can be stably closed by sheared purine.purine pairs. These special motifs have been found in several important biological systems. We now extend these loop-closing base-pairs to a sheared purine. pyrimidine (A.C) pair at a neutral pH condition. High-resolution NMR spectroscopy, distance geometry, and molecular dynamics methods were used to study d(GTACANCGTAC) oligomers. Numerous idiosyncratic nuclear Overhauser enhancements, especially those across the A.C base-pair between C4NH2left and right arrow AH1', C4NH2left and right arrow AH2, and CH5left and right arrow AH2 proton pairs, clearly define the novel sheared nature of the closing A.C base-pair. This novel base-pair is possibly present in several biological systems and in two single-stranded DNA aptamers selected from oligonucleotide libraries.  相似文献   

15.
The synthesis of 8-methoxy-2'-deoxyadenosine (moA) protected at N6 as an N,N-dimethylformamidine derivative and incorporation of the modified nucleoside into oligodeoxynucleotides via the phosphoramidite method are described. UV thermal denaturation studies were conducted on duplexes containing moA:G, moA:C and moA:T base pairs to determine the thermodynamic stability of duplexes containing moA relative to their adenosine (A)-containing counterparts. In the case of moA:G base pairs the effect of moA substitution is sequence dependent. In A:G mismatch-containing sequences, which have been shown by structural characterization to have a syn conformational preference at the glycosidic bond of A, moA substitution results in stabilization of the duplex. In contrast, in sequences where the A in the A:G mismatch has been shown to prefer the anti conformation moA substitution is destabilizing to the duplex. Thus moA may be a useful probe for investigating the conformational preferences of the N-glycosidic bond of adenosine within DNA. In addition, moA nucleoside is more resistant to acid-catalyzed depurination than previously described 8-bromo-2'-deoxyadenosine, allowing for facile incorporation into oligonucleotides via automated solid phase DNA synthesis.  相似文献   

16.
The nudged elastic band (NEB) technique has been implemented in AMBER to calculate low-energy paths for conformational changes. A novel simulated annealing protocol that does not require an initial hypothesis for the path is used to sample low-energy paths. This was used to study the conformational change of an RNA cis Watson-Crick/Hoogsteen GG non-canonical pair, with one G syn around the glycosidic bond and the other anti. A previous solution structure, determined by NMR-constrained modeling, demonstrated that the GG pairs change from (syn)G-(anti)G to (anti)G-(syn)G in the context of duplex r(GCAGGCGUGC) on the millisecond timescale. The set of low-energy paths found by NEB show that each G flips independently around the glycosidic bond, with the anti G flipping to syn first. Guanine bases flip without opening adjacent base-pairs by protruding into the major groove, accommodated by a transient change by the ribose to C2'-exo sugar pucker. Hydrogen bonds between bases and the backbone, which lower the energetic barrier to flipping, are observed along the path. The results show the plasticity of RNA base-pairs in helices, which is important for biological processes, including mismatch repair, protein recognition, and translation. The modeling of the GG conformational change also demonstrates that NEB can be used to discover non-trivial paths for macromolecules and therefore NEB can be used as an exploratory method for predicting putative conformational change paths.  相似文献   

17.
X-ray, phylogenetic and quantum chemical analysis of molecular interactions and conservation patterns of cis Watson-Crick (W.C.) A/G base-pairs in 16S rRNA, 23S rRNA and other molecules was carried out. In these base-pairs, the A and G nucleotides interact with their W.C. edges with glycosidic bonds oriented cis relative to each other. The base-pair is stabilised by two hydrogen bonds, the C1'-C1' distance is enlarged and the G(N2) amino group is left unpaired. Quantum chemical calculations show that, in the absence of other interactions, the unpaired amino group is substantially non-planar due to its partial sp(3) pyramidalization, while the whole base-pair is internally propeller twisted and very flexible. The unique molecular properties of the cis W.C. A/G base-pairs make them distinct from other base-pairs. They occur mostly at the ends of canonical helices, where they serve as interfaces between the helix and other motifs. The cis W.C. A/G base-pairs play crucial roles in natural RNA structures with salient sequence conservation patterns. The key contribution to conservation is provided by the unpaired G(N2) amino group that is involved in a wide range of tertiary and neighbor contacts in the crystal structures. Many of them are oriented out of the plane of the guanine base and utilize the partial sp(3) pyramidalization of the G(N2). There is a lack of A/G to G/A covariation, which, except for the G(N2) position, would be entirely isosteric. On the contrary, there is a rather frequent occurrence of G/A to G/U covariation, as the G/U wobble base-pair has an unpaired amino group in the same position as the cis W.C. G/A base-pair. The cis W.C. A/G base-pairs are not conserved when there is no tertiary or neighbor interaction. Obtaining the proper picture of the interactions and phylogenetic patterns of the cis W.C. A/G base-pairs requires a detailed analysis of the relation between the molecular structures and the energetics of interactions at a level of single H-bonds and contacts.  相似文献   

18.
Base pairing involving deoxyinosine: implications for probe design.   总被引:34,自引:24,他引:10       下载免费PDF全文
The thermal stability of oligodeoxyribonucleotide duplexes containing deoxyinosine (I) residues matched with each of the four normal DNA bases were determined by optical melting techniques. The duplexes containing at least one I were obtained by mixing equimolar amounts of an oligonucleotide of sequence dCA3XA3G with one of sequence dCT3YT3G where X and Y were A, C, G, T, or I. Comparison of optical melting curves yielded relative stabilities for the I-containing standard base pairs in an otherwise identical base-pair sequence. I:C pairs were found to be less stable than A:T pairs in these duplexes. Large neighboring-base effects upon stability were observed. For example, when (X,Y) = (I,A), the duplex is eight-fold more stable than when (X,Y) = (A,I). Independent of sequence effects the order of stabilities is: I:C greater than I:A greater than I:T congruent to I:G. This order differs from that of deoxyguanosine which pairs less strongly with dA; otherwise each deoxyinosine base pair is less stable than its deoxyguanosine counterpart in the same sequence environment. Implications of these results for design of DNA oligonucleotide probes are discussed.  相似文献   

19.
In order to reach a more detailed understanding of the mechanism of the mutagenic action of methoxyamine and of N4-methoxycytidine and its 2'-deoxyribo-analogue, the solution structures of the self-complementary octanucleotide, d(CGAATTCG) and its analogues, d(CGAATCCG), d(CGAATMCG) and d(CGAATPCG) (designated 8mer-AT, 8mer-AC, 8mer-AM, and 8mer-AP, respectively), were investigated by 1H nuclear magnetic resonance spectroscopy; M is N4-methoxycytosine (mo4C) and P is an analogue, the bicyclic dihydropyrimido[4,5-c][1,2]oxazin-7-one, in which the N-O bond is held in the anti configuration with respect to N3 of the cytosine ring. Correlated spectroscopy and nuclear Overhauser spectroscopy allowed assignment of the base, anomeric and H2'/H2" protons in 8mers-AT, -AM and -AP, and showed that all three had features consistent with a regular B-DNA duplex structure. Duplex-to-coil transition temperatures were determined to be 52(+/- 2) degrees C (8mer-AT), 51(+/- 2) degrees C (8mer-AP), 32(+/- 2) degrees C (8mer-AM); on the chemical shift timescale, the melting transition was fast for 8mer-AT and 8mer-AP, but slow for 8mer-AM. Imino proton spectra were indicative of Watson-Crick base-pairing in 8mers-AT, -AP and -AM. The 8mer-AP duplex had a structure and melting characteristics virtually identical with those of the 8mer-AT duplex. The preferred syn configuration of the methoxyl group in M had a destabilising effect on the 8mer-AM duplex. At low temperatures, the A.M base-pair was in fast equilibrium between Watson-Crick and wobble configurations, with the methoxyl function anti-oriented, but the melting transition was accompanied by isomerization of the methoxyl group to the syn conformation. This syn-anti isomerization was the rate-determining step in the duplex-to-coil transition. The 8mer-AC oligomer did not form a stable duplex.  相似文献   

20.
Kretulskie AM  Spratt TE 《Biochemistry》2006,45(11):3740-3746
The mechanism by which purine-purine mispairs are formed and extended was examined with the high-fidelity Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease activity inactivated. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. A decrease in rate associated with a 7-deazapurine substitution would suggest that the nucleotide is in a syn conformation in a Hoogsteen base pair with the opposite base. During mispair formation, the k(pol)/K(d) values for the insertion of dATP opposite A (dATP/A) as well as dATP/G and dGTP/G were decreased greater than 10-fold with the deazapurine in the dNTP. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the syn conformation and the template base in the anti conformation. During mispair extension, the only decrease in k(pol)/K(d) was associated with the G/G base pair in which 7-deazaguanine was in the template strand. These results as well as previous results [McCain et al. (2005) Biochemistry 44, 5647-5659] in which a hydrogen bond was found between the 3-position of guanine at the primer terminus and Arg668 during G/A and G/G mispair extension indicate that the conformation of the purine at the primer terminus is in the anti conformation during mispair extension. These results suggest that purine-purine mispairs are formed via a Hoogsteen geometry in which the dNTP is in the syn conformation and the template is in the anti conformation. During extension, however, the conformation of the primer terminus changes to an anti configuration while the template base may be in either the syn or anti conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号