首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different classes of thiol-oxidoreductases that facilitate the formation of protein disulfide bonds have been identified. They are the Ero1 and SOX/ALR family members in eukaryotic cells, and the DsbB family members in prokaryotic cells. These enzymes transfer oxidizing potential to the proteins PDI or DsbA, which are responsible for directly introducing disulfide bonds into substrate proteins during oxidative protein folding in eukaryotes and prokaryotes, respectively. A comparison of the recent X-ray crystal structure of Ero1 with the previously solved structure of the SOX/ALR family member Erv2 reveals that, despite a lack of primary sequence homology between Ero1 and Erv2, the core catalytic domains of these two proteins share a remarkable structural similarity. Our search of the DsbB protein sequence for features found in the Ero1 and Erv2 structures leads us to propose that, in a fascinating example of structural convergence, the catalytic core of this integral membrane protein may resemble the soluble catalytic domain of Ero1 and Erv2. Our analysis of DsbB also identified two new groups of DsbB proteins that, based on sequence homology, may also possess a catalytic core similar in structure to the catalytic domains of Ero1 and Erv2.  相似文献   

2.
Miyazono K  Sawano Y  Tanokura M 《Proteins》2005,61(1):196-205
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.  相似文献   

3.
Stability and function of a large number of proteins are crucially dependent on the presence of disulfide bonds. Recent genome analysis has pointed out an important role of disulfide bonds for the structural stabilization of intracellular proteins from hyperthermophilic archaea and bacteria. These findings contradict the conventional view that disulfide bonds are rare in those proteins. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key enzyme in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein consists of two combined thioredoxin-related units which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Both sites seem to have different redox properties. A relation to eukaryotic protein disulfide isomerase is suggested by the observed structural and functional characteristics of the protein. Enzymological studies have revealed that both, the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The variety of active site disulfides found in PDO’s from hyperthermophiles is puzzling. It is assumed, that PDO enzymes in hyperthermophilic archaea and bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds.  相似文献   

4.
Pellequer JL  Chen SW 《Proteins》2006,65(1):192-202
The key issue for disulfide bond engineering is to select the most appropriate location in the protein. By surveying the structure of experimentally engineered disulfide bonds, we found about half of them that have geometry incompatible with any native disulfide bond geometry. To improve the current prediction methods that tend to apply either ideal geometrical or energetical criteria to single three-dimensional structures, we have combined a novel computational protocol with the usage of multiple protein structures to take into account protein backbone flexibility. The multiple structures can be selected from either independently determined crystal structures for identical proteins, models of nuclear magnetic resonance experiments, or crystal structures of homology-related proteins. We have validated our approach by comparing the predictions with known disulfide bonds. The accuracy of prediction for native disulfide bonds reaches 99.6%. In a more stringent test on the reported engineered disulfide bonds, we have obtained a success rate of 93%. Our protocol also determines the oxido-reduction state of a predicted disulfide bond and the corresponding mutational cost. From the energy ranking, the user can easily choose top predicted sites for mutagenesis experiments. Our method provides information about local stability of the engineered disulfide bond surroundings.  相似文献   

5.
Ladenstein R  Ren B 《The FEBS journal》2006,273(18):4170-4185
Disulfide bonds are required for the stability and function of a large number of proteins. Recently, the results from genome analysis have suggested an important role for disulfide bonds concerning the structural stabilization of intracellular proteins from hyperthermophilic Archaea and Bacteria, contrary to the conventional view that structural disulfide bonds are rare in proteins from Archaea. A specific protein, known as protein disulfide oxidoreductase (PDO) is recognized as a potential key player in intracellular disulfide-shuffling in hyperthermophiles. The structure of this protein shows a combination of two thioredoxin-related units with low sequence identity which together, in tandem-like manner, form a closed protein domain. Each of these units contains a distinct CXXC active site motif. Due to their estimated conformational energies, both sites are likely to have different redox properties. The observed structural and functional characteristics suggest a relation to eukaryotic protein disulfide isomerase. Functional studies have revealed that both the archaeal and bacterial forms of this protein show oxidative and reductive activity and are able to isomerize protein disulfides. The physiological substrates and reduction systems, however, are to date unknown. The variety of active site disulfides found in PDOs from hyperthermophiles is puzzling. Nevertheless, the catalytic function of any PDO is expected to be correlated with the redox properties of its active site disulfides CXXC and with the distinct nature of its redox environment. The residues around the two active sites form two grooves on the protein surface. In analogy to a similar groove in thioredoxin, both grooves are suggested to constitute the substrate binding sites of PDO. The direct neighbourhood of the grooves and the different redox properties of both sites may favour sequential reactions in protein disulfide shuffling, like reduction followed by oxidation. A model for peptide binding by PDO is proposed to be derived from the analysis of crystal packing contacts mimicking substrate binding interactions. It is assumed, that PDO enzymes in hyperthermophilic Archaea and Bacteria may be part of a complex system involved in the maintenance of protein disulfide bonds. The regulation of disulfide bond formation may be dependent on a distinct interplay of thermodynamic and kinetic effects, including functional asymmetry and substrate-mediated protection of the active sites, in analogy to the situation in protein disulfide isomerase. Numerous questions related to the function of PDO enzymes in hyperthermophiles remain unanswered to date, but can probably successfully be studied by a number of approaches, such as first-line genetic and in vivo studies.  相似文献   

6.
Sun Y  Zeng F  Zhang W  Qiao J 《Gene》2012,499(2):288-296
Antibiotic glycosyltransferases (AGts) attach unusual deoxy-sugars to aglycons so antibiotics can exert function. It has been reported that polyene macrolide (PEM) AGts have different evolutionary origin when compared with other polyketide AGts, and our previous analysis have suggested that they could be results of horizontal gene transfer (HGT) from eukaryotes. In this paper, we compared the structures of PEM AGts with structures of eukaryotes and other AGts, and then built models of the representative PEM AGts and GT-1 glycosyltransferases. We also constructed the Neighbor-Joining (NJ) trees based on the normalized Root Mean Square (RMS) distance, the Bayesian tree guided by structural alignments, and carried out analysis on several key conserved residues in PEM AGts. The NJ tree showed a close relationship between PEM AGts and eukaryotic glycosyltransferases, and Bayesian tree further supported their affinity with UDP-glucuronosyltransferases (UGTs). Analysis on key conserved residues showed that PEM AGts may have similar interaction mechanism such as in the formation of hydrogen bonds as eukaryotic glycosyltransferases. Using structure-based phylogenetic approaches, this study further supported that PEM AGts were the result of HGT between prokaryotes and eukaryotes.  相似文献   

7.
Disulfide bonds play an important role in the structure and function of membrane and secretory proteins. The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by a complex network of thiol-disulfide oxidoreductases. Whereas a number of ER-resident oxidoreductases have been identified, the function of only a few of them is firmly established. Recently, a selenocysteine-containing oxidoreductase, Sep15, has been implicated in disulfide bond assisted protein folding, and a role in quality control for this selenoprotein has been proposed. This review summarizes up-to-date information on the Sep15 family proteins and highlights new insights into their physiological function.  相似文献   

8.
Glycosyltransferases, the enzymes that build oligosaccharides and glycoconjugates, have received much interest in recent years owing to their biological functions and their potential uses in biotechnology. Despite the fact that many glycosyltransferases recognize similar donor or acceptor substrates, there is surprisingly limited sequence identity between different classes. On the one hand, the glycosyltransferases are found in a large number of families, by sequence-based classification. On the other hand, only two structural folds have been identified among the fewer than one dozen glycosyltransferases that have been crystallized at present. Detection of conserved motifs that have a direct role in the functional aspects of glycosyltransferases is one approach for identifying remote similarity. With the availability of more crystal structures, the use of the fold-recognition approach is also very promising.  相似文献   

9.
A reduced representation model, which has been described in previous reports, was used to predict the folded structures of proteins from their primary sequences and random starting conformations. The molecular structure of each protein has been reduced to its backbone atoms (with ideal fixed bond lengths and valence angles) and each side chain approximated by a single virtual united-atom. The coordinate variables were the backbone dihedral angles phi and psi. A statistical potential function, which included local and nonlocal interactions and was computed from known protein structures, was used in the structure minimization. A novel approach, employing the concepts of genetic algorithms, has been developed to simultaneously optimize a population of conformations. With the information of primary sequence and the radius of gyration of the crystal structure only, and starting from randomly generated initial conformations, I have been able to fold melittin, a protein of 26 residues, with high computational convergence. The computed structures have a root mean square error of 1.66 A (distance matrix error = 0.99 A) on average to the crystal structure. Similar results for avian pancreatic polypeptide inhibitor, a protein of 36 residues, are obtained. Application of the method to apamin, an 18-residue polypeptide with two disulfide bonds, shows that it folds apamin to native-like conformations with the correct disulfide bonds formed.  相似文献   

10.
The genomics of disulfide bonding and protein stabilization in thermophiles   总被引:3,自引:0,他引:3  
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.  相似文献   

11.
The glucosyltransferase Lgt1 is one of three glucosylating toxins of Legionella pneumophila, the causative agent of Legionnaires disease. It acts through specific glucosylation of a serine residue (S53) in the eukaryotic elongation factor 1A and belongs to type A glycosyltransferases. High-resolution crystal structures of Lgt1 show an elongated shape of the protein, with the binding site for uridine disphosphate glucose at the bottom of a deep cleft. Lgt1 shows only a low sequence identity with other type A glycosyltransferases, and structural conservation is limited to a central folding core that is usually observed within this family of proteins. Domains and protrusions added to the core motif represent determinants for the specific recognition and binding of the target. Manual docking experiments based on the crystal structures of toxin and target protein suggest an obvious mode of binding to the target that allows for efficient transfer of a glucose moiety.  相似文献   

12.
Disulfide bridges have an enormous impact on the structure of a large number of proteins and polypeptides. Understanding the structural basis that regulates their formation may be important for the design of novel peptide-based molecules with a specific fold and stability. Here we report a statistical analysis of the relationships between secondary structure and disulfide bond formation, carried out using a large database of protein structures. Our analyses confirm the observation sporadically reported in previous investigations that cysteine residues located in alpha-helices display a limited tendency to form disulfide bridges. The very low occurrence of the disulfide bond in all alpha-chains compared to all beta-chains indicates that this property is also evident when proteins with different topologies are investigated. Taking advantage of the large database that endorsed the analysis on relatively rare motifs, we demonstrate that cysteine residues embedded in 3(10) helices present a good tendency to form disulfide bonds. This result is somewhat surprising since 3(10) helices are commonly assimilated into alpha-helices. A plausible structural explanation for the observed data has been derived combining analyses of disulfide bond sequence separation and of the length of the different secondary structure elements.  相似文献   

13.
D Kominos  D A Bassolino  R M Levy  A Pardi 《Biopolymers》1990,29(14):1807-1822
The side-chain conformations have been analyzed in the antimicrobial peptide, Neutrophil Peptide-5 (NP-5), whose structure was independently generated from nmr-derived distance constraints using a distance geometry algorithm. The side-chain and peptide dihedral angle distributions in the nmr structures were compared with those constructed from a data base of high-resolution protein crystal structures. The side-chain conformational preferences for NP-5 in solution are significantly different from those observed in the crystal structure data base. These results indicate that the side-chain conformations are quite disordered for many of the residues of NP-5. The absence of a correlation between the width of the conformational distribution and surface accessibility suggests that the disorder may be due to limitations in the structural information extracted from the nmr data rather than to molecular motion. However, it is also observed that the degree of conformational disorder is only weakly correlated with the number of nuclear Overhauser enhancements to a given side chain. Possible reasons for this are discussed. Molecular mechanics refinement of these structures did not significantly change the side-chain populations. Anomolously wide distributions are observed for rotations about the peptide bonds and the disulfide bonds in the NP-5 distance geometry structures, which are improved by the refinement. The very high degree of order observed for the central dihedral angle of the disulfide bond in the high-resolution crystal data base suggests that the rotation about this bond in proteins is determined by the local potential.  相似文献   

14.
The geometries of two disulfide bridges genetically engineered into subtilisin have been characterized by x-ray crystallography to determine the structural and energetic constraints involved in introducing disulfide bonds into proteins. Both disulfide bridges (Cys-24-Cys-87 and Cys-22-Cys-87) exhibit atypical sets of dihedral angles compared to those for other reported disulfide structures in proteins. The geometric trends for naturally occurring disulfides in protein crystal structures are examined. Comparison of the disulfide-containing mutant protein structures with the wild-type structure shows that, in both cases, disulfide incorporation is accommodated by relatively minor changes in local main-chain conformation. The Cys-22-Cys-87 disulfide has two high energy dihedral angles (X2 = 121 degrees, X2' = 143 degrees). Both disulfides produce short non-bonded contacts with the main-chain.  相似文献   

15.
The essential flavoenzyme Ero1p both creates de novo disulfide bonds and transfers these disulfides to the folding catalyst protein disulfide isomerase (PDI). The recently solved crystal structure of Ero1p, in combination with previous biochemical, genetic and structural data, provides insight into the mechanism by which Ero1p accomplishes these tasks. A comparison of Ero1p with the smaller flavoenzyme Erv2p highlights important structural elements that are shared by these flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases and suggests some general themes that might be common to proteins that generate disulfide bonds.  相似文献   

16.
Xanthomonas campestris GumK (beta-1,2-glucuronosyltransferase) is a 44-kDa membrane-associated protein that is involved in the biosynthesis of xanthan, an exopolysaccharide crucial for this bacterium's phytopathogenicity. Xanthan also has many important industrial applications. The GumK enzyme is the founding member of the glycosyltransferase family 70 of carbohydrate-active enzymes, which is composed of bacterial glycosyltransferases involved in exopolysaccharide synthesis. No x-ray structures have been reported for this family. To better understand the mechanism of action of the bacterial glycosyltransferases in this family, the x-ray crystal structure of apo-GumK was solved at 1.9A resolution. The enzyme has two well defined Rossmann domains with a catalytic cleft between them, which is a typical feature of the glycosyltransferase B superfamily. Additionally, the crystal structure of GumK complexed with UDP was solved at 2.28A resolution. We identified a number of catalytically important residues, including Asp(157), which serves as the general base in the transfer reaction. Residues Met(231), Met(273), Glu(272), Tyr(292), Met(306), Lys(307), and Gln(310) interact with UDP, and mutation of these residues affected protein activity both in vitro and in vivo. The biological and structural data reported here shed light on the molecular basis for donor and acceptor selectivity in this glycosyltransferase family. These results also provide a rationale to obtain new polysaccharides by varying residues in the conserved alpha/beta/alpha structural motif of GumK.  相似文献   

17.
A growing number of organisms have been discovered inhabiting extreme environments, including temperatures in excess of 100 degrees C. How cellular proteins from such organisms retain their native folds under extreme conditions is still not fully understood. Recent computational and structural studies have identified disulfide bonding as an important mechanism for stabilizing intracellular proteins in certain thermophilic microbes. Here, we present the first proteomic analysis of intracellular disulfide bonding in the hyperthermophilic archaeon Pyrobaculum aerophilum. Our study reveals that the utilization of disulfide bonds extends beyond individual proteins to include many protein-protein complexes. We report the 1.6 A crystal structure of one such complex, a citrate synthase homodimer. The structure contains two intramolecular disulfide bonds, one per subunit, which result in the cyclization of each protein chain in such a way that the two chains are topologically interlinked, rendering them inseparable. This unusual feature emphasizes the variety and sophistication of the molecular mechanisms that can be achieved by evolution.  相似文献   

18.
Kaye SL  Sansom MS  Biggin PC 《Biochemistry》2007,46(8):2136-2145
The precise nature of redox modulation of N-methyl-d-aspartate (NMDA) receptors is still unclear, although it is thought to be related to the formation and breaking of disulfide bonds. Recent structural data demonstrated the way in which disulfide bonds in the ligand-binding core of the NR1 subunit are arranged. However, the structures were not able to reconcile existing experimental data that examined the effects of mutating these cysteine residues. We have used molecular dynamics (MD) simulations of a series of in silico mutations to try and address this in terms of the current structure of the NR1 ligand-binding domain. A double mutation that removes the disulfide bridge between C744 and C798 gives rise to greater interlobe mobility which was predicted from the crystal structure information but, unexpectedly, also appears to predispose the receptor toward greater flexibility in the hinge region. Removal of the disulfide bond between C454 and C420 did not show any appreciable difference from the "wild-type" simulation, suggesting that removal of this would not change receptor properties, which is in agreement with experimental findings. Furthermore, the position of the C454 side chain could be characterized into discrete rotamers, which may reflect the observation of alternative density in the crystal structure for this residue. Simulations in which two of the disulfide bonds are removed via mutations to alanine (C420A and C436A) resulted in a tendency of the protein to adopt a partially closed conformation.  相似文献   

19.
The vast majority of glycosidic-bond synthesis in nature is performed by glycosyltransferases, which use activated glycosides as the sugar donor. Typically, the activated leaving group is a nucleoside phosphate, lipid phosphate or phosphate. The nucleotide-sugar-dependent glycosyltransferases fall into over 50 sequence-based families, with the largest and most widespread family of inverting transferases named family GT-2. Here, we present the three-dimensional crystal structure of SpsA, the first and currently the only structural representative from family GT-2, in complex with both Mn-dTDP and Mg-dTDP at a resolution of 2 A. These structures reveal how SpsA and related enzymes may display nucleotide plasticity and permit a comparison of the catalytic centre of this enzyme with those from related sequence families whose three-dimensional structures have recently been determined. Family GT-2 enzymes, together with enzymes from families 7, 13 and 43, appear to form a clan of related structures with identical catalytic apparatus and reaction mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号