首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selectin counterreceptors are glycoprotein scaffolds bearing multiple carbohydrate ligands with exceptional ability to tether flowing cells under disruptive shear forces. Bond clusters may facilitate formation and stabilization of selectin tethers. L-selectin ligation has been shown to enhance L-selectin rolling on endothelial surfaces. We now report that monoclonal antibodies-induced L-selectin dimerization enhances L-selectin leukocyte tethering to purified physiological L-selectin ligands and glycopeptides. Microkinetic analysis of individual tethers suggests that leukocyte rolling is enhanced through the dimerization-induced increase in tether formation, rather than by tether stabilization. Notably, L-selectin dimerization failed to augment L-selectin-mediated adhesion below a threshold ligand density, suggesting that L-selectin dimerization enhanced adhesiveness only to properly clustered ligand. In contrast, an epidermal growth factor domain substitution of L-selectin enhanced tether formation to L-selectin ligands irrespective of ligand density, suggesting that this domain controls intrinsic ligand binding properties of L-selectin without inducing L-selectin dimerization. Strikingly, at low ligand densities, where L-selectin tethering was not responsive to dimerization, elevated shear stress restored sensitivity of tethering to selectin dimerization. This is the first indication that shear stress augments effective selectin ligand density at local contact sites by promoting L-selectin encounter of immobilized ligand.  相似文献   

2.
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.  相似文献   

3.
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.  相似文献   

4.
Chemokines presented on specialized endothelial surfaces rapidly up-regulate leukocyte integrin avidity and firm arrest through G(i)-protein signaling. Here we describe a novel, G-protein-independent, down-regulatory activity of apical endothelial chemokines in destabilizing L-selectin-mediated leukocyte rolling. Unexpectedly, this anti-adhesive chemokine suppression of rolling does not involve L-selectin shedding. Destabilization of rolling is induced only by immobilized chemokines juxtaposed to L-selectin ligands and is an energy-dependent process. Chemokines are found to interfere with a subsecond stabilization of selectin tethers necessary for persistent rolling. This is a first indication that endothelial chemokines can attenuate in situ L-selectin adhesion to endothelial ligands at subsecond contacts. This negative feedback mechanism may underlie the jerky nature of rolling mediated by L-selectin in vivo.  相似文献   

5.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

6.
Two mechanisms have been proposed for regulating rolling velocities on selectins. These are (a) the intrinsic kinetics of bond dissociation, and (b) the reactive compliance, i.e., the susceptibility of the bond dissociation reaction to applied force. To determine which of these mechanisms explains the 7.5–11.5-fold faster rolling of leukocytes on L-selectin than on E- and P-selectins, we have compared the three selectins by examining the dissociation of transient tethers. We find that the intrinsic kinetics for tether bond dissociation are 7–10-fold more rapid for L-selectin than for E- and P-selectins, and are proportional to the rolling velocities through these selectins. The durations of pauses during rolling correspond to the duration of transient tethers on low density substrates. Moreover, applied force increases dissociation kinetics less for L-selectin than for E- and P-selectins, demonstrating that reactive compliance is not responsible for the faster rolling through L-selectin. Further measurements provide a biochemical and biophysical framework for understanding the molecular basis of rolling. Displacements of tethered cells during flow reversal, and measurements of the distance between successive pauses during rolling provide estimates of the length of a tether and the length of the adhesive contact zone, and suggest that rolling occurs with as few as two tethers per contact zone. Tether bond lifetime is an exponential function of the force on the bond, and the upper limit for the tether bond spring constant is of the same order of magnitude as the estimated elastic spring constant of the lectin–EGF unit. Shear uniquely enhances the rate of L-selectin transient tether formation, and conversion of tethers to rolling adhesions, providing further understanding of the shear threshold requirement for rolling through L-selectin.  相似文献   

7.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

8.
Interaction of leukocytes in flow with adherent leukocytes may contribute to their accumulation at sites of inflammation. Using L- selectin immobilized in a flow chamber, a model system that mimics presentation of L-selectin by adherent leukocytes, we characterize ligands for L-selectin on leukocytes and show that they mediate tethering and rolling in shear flow. We demonstrate the presence of L- selectin ligands on granulocytes, monocytes, and myeloid and lymphoid cell lines, and not on peripheral blood T lymphocytes. These ligands are calcium dependent, sensitive to protease and neuraminidase, and structurally distinct from previously described ligands for L-selectin on high endothelial venules (HEV). Differential sensitivity to O-sialo- glycoprotease provides evidence for ligand activity on both mucin-like and nonmucin-like structures. Transfection with fucosyltransferase induces expression of functional L-selectin ligands on both a lymphoid cell line and a nonhematopoietic cell line. L-selectin presented on adherent cells is also capable of supporting tethering and rolling interactions in physiologic shear flow. L-selectin ligands on leukocytes may be important in promoting leukocyte-leukocyte and subsequent leukocyte endothelial interactions in vivo, thereby enhancing leukocyte localization at sites of inflammation.  相似文献   

9.
Cell migration in blood flow is mediated by engagement of specialized adhesion molecules that function under hemodynamic shear conditions, and many of the effectors of these adhesive interactions, such as the selectins and their ligands, are well defined. However, in contrast, our knowledge of the adhesion molecules operant under lymphatic flow conditions is incomplete. Among human malignancies, head and neck squamous cell cancer displays a marked predilection for locoregional lymph node metastasis. Based on this distinct tropism, we hypothesized that these cells express adhesion molecules that promote their binding to lymphoid tissue under lymphatic fluid shear stress. Accordingly, we investigated adhesive interactions between these and other cancer cells and the principal resident cells of lymphoid organs, lymphocytes. Parallel plate flow chamber studies under defined shear conditions, together with biochemical analyses, showed that human head and neck squamous cell cancer cells express heretofore unrecognized L-selectin ligand(s) that mediate binding to lymphocyte L-selectin at conspicuously low shear stress levels of 0.07-0.08 dynes/cm(2), consistent with lymphatic flow. The binding of head and neck squamous cancer cells to L-selectin displays canonical biochemical features, such as requirements for sialylation, sulfation, and N-glycosylation, but displays a novel operational shear threshold differing from all other L-selectin ligands, including those expressed on colon cancer and leukemic cells (e.g. HCELL). These data define a novel class of L-selectin ligands and expand the scope of function for L-selectin within circulatory systems to now include a novel activity within shear stresses characteristic of lymphatic flow.  相似文献   

10.
Expression of L-selectin on human hematopoietic cells (HC) is associated with a higher proliferative activity and a more rapid engraftment after hematopoietic stem cell transplantation. Two L-selectin ligands are expressed on human HCs, P-selectin glycoprotein ligand-1 (PSGL-1) and a specialized glycoform of CD44 (hematopoietic cell E- and L-selectin ligand, HCELL). Although the structural biochemistry of HCELL and PSGL-1 is well characterized, the relative capacity of these molecules to mediate L-selectin-dependent adhesion has not been explored. In this study, we examined under shear stress conditions L-selectin-dependent leukocyte adhesive interactions mediated by HCELL and PSGL-1, both as naturally expressed on human HC membranes and as purified molecules. By utilizing both Stamper-Woodruff and parallel-plate flow chamber assays, we found that HCELL displayed a 5-fold greater capacity to support L-selectin-dependent leukocyte adherence across a broad range of shear stresses compared with that of PSGL-1. Moreover, L-selectin-mediated leukocyte binding to immunopurified HCELL was consistently >5-fold higher than leukocyte binding to equivalent amounts of PSGL-1. Taken together, these data indicate that HCELL is a more avid L-selectin ligand than PSGL-1 and may be the preferential mediator of L-selectin-dependent adhesive interactions among human HCs in the bone marrow.  相似文献   

11.
Ligands for L-selectin, a leukocyte adhesion molecule, are expressed in high endothelial venules (HEVs) in lymph nodes and extravascular tissues, such as renal tubules. Here, we report that the binding of L-selectin to its vascular and extravascular ligands is differentially regulated by pH. The optimal L-selectin-dependent binding of leukocytes to HEVs was observed at pH 7.4, a physiological pH in the blood. In contrast, the optimal binding of leukocytes to the renal tubules was observed at pH 5.6. Consistently, optimal binding of soluble recombinant L-selectin to a major vascular ligand, 6-sulfo sialyl Lewis X, was observed at pH 7.4. Binding to extravascular ligands, such as chondroitin sulfate (CS) B, CS E and heparan sulfate, occurred at pH 5.6. Under physiological shear stress ranging from 1 to 2 dynes/cm2, maximal leukocyte rolling on vascular ligands was observed at pH 6.8 to 7.4, and no rolling was detected at pH conditions below 5.6. These findings suggest that the pH environment is one important factor that determines leukocyte trafficking under physiological and pathological conditions.  相似文献   

12.
L-selectin and its biological ligands   总被引:3,自引:0,他引:3  
This review considers the leukocyte adhesive receptor known as L-selectin. This protein, belonging to the selectin family of cell-cell adhesion receptors, mediates adhesion by virtue of a C-type lectin domain at its amino terminus. The protein was discovered as a lymphocyte homing receptor involved in the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes. Its widespread distribution on all leukocyte populations underlies a more general role in a variety of leukocyte-endothelial interactions. In the HEV interaction, cognate HEV ligands for L-selectin have been identified as two sulfated, sialylated, and fucosylated glycoproteins, known as GlyCAM-1 and Sgp90. These ligands have mucin-like domains which confer important properties for their proposed adhesive function. The carbohydrate features of these ligands, essential for their interaction with L-selectin, are reviewed. The existence of extralymphoid ligands for L-selectin is also discussed.Presented at the XXXV Symposium of the Society for Histochemistry, 29 September 1993, Gargellen, Austria  相似文献   

13.
Using microfluidic assays at a 100 s?1 wall shear rate, we examined the effects of ethanol on cholesterol-loaded neutrophils with respect to: (1) collision efficiency and membrane tethering to P-selectin-coated microbeads, (2) rolling on P-selectin-coated surfaces, and (3) primary and secondary interactions with neutrophils pre-adhered to intercellular adhesion molecule-1 (ICAM-1). Using methyl-β-cyclodextrin:cholesterol complexes, membrane cholesterol was increased over control by 4.6-fold (no ethanol), 3.6-fold (0.3% ethanol pre-loading), and 1.6-fold (0.3% ethanol post-loading). These treatments did not alter CD11b expression; however, PSGL-1 and L-selectin were lowered by cholesterol enrichment (±ethanol). Cholesterol enrichment enhanced microbead collision efficiency, which was abrogated by ethanol. Ethanol had no effect on elevation of tethering fraction by cholesterol enrichment. Incubation of cholesterol-loaded neutrophils with ethanol resulted in significantly longer membrane tethers, due to tether lifetime enhancement. On P-selectin-coated surfaces, cholesterol-enriched neutrophils exposed to ethanol rolled faster and with more variability than cholesterol-enriched neutrophils. Ethanol reduced homotypic collision efficiency of cholesterol-loaded neutrophils without effect on tethering fraction or secondary collision efficiency. Tether length during cholesterol-loaded neutrophil homotypic collisions was enhanced by ethanol, in part due to increased L-selectin/PSGL-1 bond tether lifetime. Overall, ethanol attenuated cholesterol-induced adhesion increases while increasing membrane fluidity as indicated by tether length.  相似文献   

14.
The L- and E-selectins are leukocyte and endothelial cell surface molecules which mediate leukocyte-endothelial cell adhesion by interacting with carbohydrate ligands. In the present study we find that L-selectin, like E-selectin, can interact with synthetic neoglycoproteins containing Sialyl Le(x) (Neu5Ac alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc beta-R), or Sialyl Le(a) (Neu5Ac-alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta-R). Additionally, both the E-selectin and L-selectin can bind the peripheral lymph node addressin, a high endothelial venule ligand for L-selectin. Despite overlapping interactions, the L- and E-selectins discriminate between their native ligands. The peripheral lymph node addressin is a preferential ligand for L-selectin; and furthermore, L-selectin expressing cells do not interact detectably with the cutaneous lymphocyte antigen, a native glycoprotein ligand for E-selectin found on a subset of lymphocytes associated with the skin.  相似文献   

15.
L-Selectin mediates leukocyte rolling on endothelium and immobilized leukocytes. Its regulation has been the subject of much study, and the conformation of the molecule may play an important role in its function. Here we report that a conformational change in L-selectin, induced by an anti-lectin domain mAb (LAM1-116) and recognized by another mAb directed to a conserved epitope on L-selectin (EL-246), predisposed L-selectin to cytoskeletal association. This effect was due to direct binding of the mAb, not to overt signaling events, and was specific to LAM1-116. Nineteen other anti-L-selectin mAbs directed against the lectin, epidermal growth factor, or short consensus repeat domains lacked this activity. The induced conformational change occurred at 37 degrees C, at 4 degrees C, in the presence of sodium azide and tyrosine kinase inhibitors herbimycin A and genistein, and with soluble detergent-extracted L-selectin. In the presence of LAM1-116, EL-246 induced cytoskeletal association of L-selectin in the absence of Ab cross-linking as visualized by L-selectin staining after low dose detergent treatment of the cells. We propose that the conformational change described herein regulates L-selectin-mediated events by exposing a high avidity binding site that, when engaged, triggers association of L-selectin with the cytoskeleton, which may lead to stronger tethers with physiological ligands.  相似文献   

16.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.  相似文献   

17.
L-Selectin, a leukocyte adhesion molecule, mediates leukocyte rolling on the endothelium and plays a critical role in leukocyte recruitment at inflammatory sites as well as in lymphocyte homing. We have previously shown that L-selectin reactive chondroitin sulfate and heparan sulfate proteoglycans (HSPGs) are both expressed in the distal tubules of the kidney and that versican is one of the chondroitin sulfate-type ligands. In the present study, we characterized the heparan sulfate-type ligand(s) in more detail. The molecular sizes of HSPGs were approximately 600 kDa with core protein sizes of 160 and 180 kDa. Western blotting analysis showed that L-selectin reactive HSPGs were neither agrin nor perlecan, major basement membrane HSPGs in the kidney. The binding to L-selectin was mediated by the lectin domain of L-selectin in a Ca2+-dependent manner and required heparan sulfate side chains, but not sialic acid. To our knowledge, this is the first biochemical characterization of the L-selectin reactive heparan sulfate proteoglycan(s) in the distal tubules of the kidney.  相似文献   

18.
Selectins mediate the initial tethering and rolling of leukocytes on vessel walls. Adhesion by selectins is a function of both ligand recognition at equilibrium and mechanical properties of the selectin-ligand bond under applied force. We describe an EGF domain mutant of L-selectin with profoundly augmented adhesiveness over that of native L-selectin but conserved ligand specificity. This mutant, termed LPL, was derived by a substitution of the EGF-like domain of L-selectin with the homologous domain from P-selectin. The mutant bound soluble carbohydrate L-selectin ligand with affinity comparable with that of native L-selectin but interacted with all surface-bound ligands much more readily than native L-selectin, in particular under elevated shear flow. Tethers mediated by both native and mutant L-selectin exhibited similar lifetimes under a range of shear stresses, but the rate of bond formation by the mutant was at least 10-fold higher than that of native L-selectin toward distinct L-selectin ligands. Enhanced rate of bond formation by the mutant was associated with profoundly stronger rolling interactions and reduced dependence of rolling on a threshold of shear stress. This is the first demonstration that the EGF domain can modulate the binding of the lectin domain of a selectin to surface-immobilized ligands under shear flow without affecting the equilibrium properties of the selectin toward soluble ligands.  相似文献   

19.
Xu G  Shao JY 《Biophysical journal》2005,88(1):661-669
The initial arrest and subsequent rolling of a leukocyte on the vascular endothelium is believed to be facilitated by the extraction of tethers, which are narrow membranous tubes drawn from the leukocyte. Although single tether extraction from neutrophils has been studied thoroughly, the relationship between the tether force (F) and tether-growth velocity (U(t)) is still unknown for double tethers drawn from neutrophils. In this study, we have determined this relationship with the micropipette-aspiration technique. As a comparison, tether extraction from CD4+ T-lymphocytes was also studied. The threshold force and effective viscosity for single tether extraction from passive CD4+ T-lymphocytes were found to be 46 pN and 1.55 pN x s/microm, respectively. These values were modulated by stimulation with phorbol myristate acetate (PMA), but not interleukin-8 (IL-8). More importantly, for both types of leukocyte, the threshold force and effective viscosity for double tether extraction are about twice as large as those corresponding to single tether extraction. Neither IL-8 nor PMA stimulation had any effect on this correlation. These results indicate that double tethers are highly localized on cellular surfaces and independent of each other during the rolling process.  相似文献   

20.
《The Journal of cell biology》1995,129(4):1155-1164
The leukocyte adhesion molecule L-selectin mediates binding to lymph node high endothelial venules (HEV) and contributes to leukocyte rolling on endothelium at sites of inflammation. Previously, it was shown that truncation of the L-selectin cytoplasmic tail by 11 amino acids abolished binding to lymph node HEV and leukocyte rolling in vivo, but the molecular basis for that observation was not determined. This study examined potential interactions between L-selectin and cytoskeletal proteins. We found that the cytoplasmic domain of L- selectin interacts directly with the cytoplasmic actin-binding protein alpha-actinin and forms a complex with vinculin and possibly talin. Solid phase binding assays using the full-length L-selectin cytoplasmic domain bound to microtiter wells demonstrated direct, specific, and saturable binding of purified alpha-actinin to L-selectin (Kd = 550 nM), but no direct binding of purified talin or vinculin. Interestingly, talin potentiated binding of alpha-actinin to the L- selectin cytoplasmic domain peptide despite the fact that direct binding of talin to L-selectin could not be measured. Vinculin binding to the L-selectin cytoplasmic domain peptide was detectable only in the presence of alpha-actinin. L-selectin coprecipitated with a complex of cytoskeletal proteins including alpha-actinin and vinculin from cells transfected with L-selectin, consistent with the possibility that alpha- actinin binds directly to L-selectin and that vinculin associates by binding to alpha-actinin in vivo to link actin filaments to the L- selectin cytoplasmic domain. In contrast, a deletion mutant of L- selectin lacking the COOH-terminal 11 amino acids of the cytoplasmic domain failed to coprecipitate with alpha-actinin or vinculin. Surprisingly, this mutant L-selectin localized normally to the microvillar projections on the cell surface. These data suggest that the COOH-terminal 11 amino acids of the L-selectin cytoplasmic domain are required for mediating interactions with the actin cytoskeleton via a complex of alpha-actinin and vinculin, but that this portion of the cytoplasmic domain is not necessary for proper localization of L- selectin on the cell surface. Correct L-selectin receptor positioning is therefore insufficient for leukocyte adhesion mediated by L- selectin, suggesting that this adhesion may also require direct interactions with the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号