首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,123(5):1223-1236
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.  相似文献   

2.
Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-integrins in neural crest cell migration and differentiation. This targeted mutation caused death within a month of birth. The loss of beta1-integrins from the embryo delayed the migration of Schwann cells along axons and induced multiple defects in spinal nerve arborisation and morphology. There was an almost complete absence of Schwann cells and sensory axon segregation and defective maturation in neuromuscular synaptogenesis. Thus, beta1-integrins are important for the control of embryonic and postnatal peripheral nervous system development.  相似文献   

3.
BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.  相似文献   

4.
The molecules that mediate cell-matrix recognition, such as fibronectins (FN) and integrins, modulate cell behavior. We have previously demonstrated that FN and the beta 1-integrins are used during neural crest cell (NCC) migration in vitro as well as in vivo, and that the FN cell-binding domains I and II exhibit functional specificity in controlling either NCC attachment, spreading, or motility in vitro. In the present study, we have analyzed the effect of changes in the integrin expression patterns on migratory cell behavior in vivo. We have generated, after stable transfection, S180 cells expressing different levels of alpha 4 beta 1 or alpha 5 beta 1 integrins, two integrins that recognize distinct FN cell-binding domains. Murine S180 cells were chosen because they behave similarly to NCC after they are grafted into the NCC embryonic pathways in the chicken embryo. Thus, they provide a model system with which to investigate the mechanisms controlling in vitro and in vivo migratory cell behavior. We have observed that either the overexpression of alpha 5 beta 1 integrin or the induction of alpha 4 beta 1 expression in transfected S180 cells enhances their motility on FN in vitro. These genetically modified S180 cells also exhibit different migratory properties when grafted into the early trunk NCC migratory pathways. We observe that alpha 5 and low alpha 4 expressors migrate in both the ventral and dorsolateral paths simultaneously, in contrast to the parental S180 cells or the host NCC, which are delayed by 24 h in their invasion of the dorsolateral path. Moreover, the alpha 4 expressors exhibit different migratory properties according to their level of alpha 4 expression at the cell surface. Cells of the low alpha 4 expressor line invade both the ventral and dorsolateral pathways. In contrast, the high expressors remain as an aggregate at the graft site, possibly the result of alpha 4 beta 1-dependent homotypic aggregation. Thus, changes in the repertoire of FN-specific integrins enable the S180 cells to exploit different pathways in the embryo and regulate the speed with which they disperse in vivo and in culture. Our studies correlate well with known changes in integrin expression during neural crest morphogenesis and strongly suggest that neural crest cells that migrate into the dorsolateral path, i.e., melanoblasts, do so only after they have upregulated the expression of FN receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

6.
During embryonic development and in response to injury, the growing axons of peripheral neurons may influence the migration and proliferation of Schwann cells which, in return, may present neurons with a critical supply of factors required for neuronal survival, growth and differentiation. The identification and characterization of agents influencing the proliferation of Schwann cells as well as Schwann cell production of factors affecting neurons is greatly facilitated by the use of in vitro techniques. We describe here a simplified method of obtaining large numbers of purified neonatal rat sciatic nerve Schwann cells for use in generating large numbers of replicate microcultures. We then illustrate the use of these microcultures to examine Schwann cell: i) morphology and survival; ii) proliferation; and iii) production of neuronotrophic and neurite-promoting activities. We report that rat Schwann cells in microculture proliferate in response to serum, laminin and fibronectin, cholera toxin, and chick embryo parasympathetic ciliary neurons. Also, extracts of Schwann cell microcultures contain independently regulated activities which support the survival and neurite outgrowth of peripheral ganglionic neurons.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

7.
Purified recombinant murine macrophage inflammatory protein-1 alpha (rmuMIP-1 alpha), a cytokine with myelopoietic activity in vitro, was assessed in vivo by injection into C3H/HeJ mice for effects on proliferation (percentage of cells in S phase DNA synthesis of the cell cycle) and absolute numbers of granulocyte-macrophage, erythroid, and multipotential progenitor cells in the femur and spleen, and on nucleated cellularity in the bone marrow, spleen, and blood. rmuMIP-1 alpha rapidly decreased cycling rates (at 2 to 10 micrograms/mouse i.v.) and absolute numbers (at 5 to 10 micrograms/mouse i.v.) of myeloid progenitor cells in the marrow and spleen. These effects were dose- and time-dependent and reversible. Suppressive effects were noted within 3 to 24 h for cell cycling and absolute numbers of progenitor cells in the marrow and spleen, and by 48 h for circulating neutrophils. A study comparing the effects of i.v. injection of rmuMIP-1 alpha versus rmuMIP-1 beta, a biochemically similar molecule but with no myelosuppressive effects in vitro, demonstrated myelosuppression in vivo by rmuMIP-1 alpha, but not by rmuMIP-1 beta. The results suggest that rmuMIP-1 alpha has myelosuppressive activity in vivo and offers the possibility that it may be a useful adjunct to treatments involving cytotoxic drugs because of its reversible suppressive effects on normal progenitor cell cycling.  相似文献   

8.
Fibulin-5, an extracellular matrix glycoprotein expressed in elastin-rich tissues, regulates vascular cell behaviour and elastic fibre deposition. Recombinant full-length human fibulin-5 supported primary human aortic SMC (smooth-muscle cell) attachment through alpha5beta1 and alpha4beta1 integrins. Cells on fibulin-5 spread poorly and displayed prominent membrane ruffles but no stress fibres or focal adhesions, unlike cells on fibronectin that also binds these integrins. Cell migration and proliferation were significantly lower on fibulin-5 than on fibronectin. Treatment of cells on fibulin-5 with a beta1 integrin-activating antibody induced stress fibres, increased attachment, migration and proliferation, and stimulated signalling of epidermal growth factor receptor and platelet-derived growth factor receptors alpha and beta. Fibulin-5 also modulated fibronectin-mediated cell spreading and morphology. We have thus identified the beta1 integrins on primary SMCs that fibulin-5 interacts with, and have shown that failure of fibulin-5 to activate these receptors limits cell spreading, migration and proliferation.  相似文献   

9.
alpha 5 beta 1 integrin mediates cell adhesion to extracellular matrix by interacting with fibronectin (FN). Mouse lines carrying null mutations in genes encoding either the alpha 5 integrin subunit or FN have been generated previously. Both mutations are embryonic lethal with overlapping defects, but the defects of alpha 5-null embryos are less severe. Primary embryonic cells lacking alpha 5 beta 1 are able to adhere to FN, form focal contacts, migrate on FN, and assemble FN matrix. These results suggest the involvement of (an)other FN receptors(s). In this study, we examined functions of alpha 4 beta 1 and alpha V integrins in embryonic cells lacking alpha 5 beta 1. Our analysis of cells lacking both alpha 4 beta 1 and alpha 5 beta 1 showed that alpha 4 beta 1 is also not required for these FN-dependent functions. Using alpha V-specific blocking reagents, we showed that alpha V integrins are required for alpha 5-null cells, but not wild-type cells, to adhere and spread on FN. Our data also showed that, although the expression levels of alpha V integrins on the wild-type and alpha 5-null cells are similar, there is an increase in recruitment of alpha V integrins into focal contacts in alpha 5-null cells plated on FN, indicating that alpha V integrins can compensate functionally for the loss of alpha 5 beta 1 in focal contacts of alpha 5-null cells. Finally, our data suggested possible roles for alpha V integrins in replacing the role of alpha 5 beta 1 in FN matrix assembly in vitro and in FN-dependent embryonic functions in vivo.  相似文献   

10.
Fibroblast growth factor 8 (FGF8) is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.  相似文献   

11.
Individuals with neurofibromatosis type 1 (NF1) develop abnormalities of both neuronal and glial cell lineages, suggesting that the NF1 protein neurofibromin is an essential regulator of neuroglial progenitor function. In this regard, Nf1-deficient embryonic telencephalic neurospheres exhibit increased self-renewal and prolonged survival as explants in vivo. Using a newly developed brain lipid binding protein (BLBP)-Cre mouse strain to study the role of neurofibromin in neural progenitor cell function in the intact animal, we now show that neuroglial progenitor Nf1 inactivation results in increased glial lineage proliferation and abnormal neuronal differentiation in vivo. Whereas the glial cell lineage abnormalities are recapitulated by activated Ras or Akt expression in vivo, the neuronal abnormalities were Ras- and Akt independent and reflected impaired cAMP generation in Nf1-deficient cells in vivo and in vitro. Together, these findings demonstrate that neurofibromin is required for normal glial and neuronal development involving separable Ras-dependent and cAMP-dependent mechanisms.  相似文献   

12.
Endostatin derived from collagen XVIII is a potent endogenous anti-angiogenic factor that induces regression of various tumors of epithelial origin. Endostatin has been shown to inhibit endothelial cell functions, however, its effect remains controversial. We first attempted here to apply the inhibitory effect of recombinant human endostatin on chondrosarcomas, which originate from the mesenchyme, in nude mice. Endostatin induced reduction of chondrosarcoma growth and tumor angiogenesis in vivo. However, endostatin showed no effect on the proliferation and migration of chondrosarcoma cells in vitro. Next, we investigated the interactions between endostatin and endothelial cells in detail. Endostatin inhibited the migration on and attachment to collagen I but did not affect the proliferation of endothelial cells. Although the migration of endothelial cells was stimulated by angiogenic factors such as basic fibroblast growth factor and vascular endothelial growth factor, endostatin showed similar inhibitory effects on it in the presence and absence of the stimulants. Moreover, the inhibitory effect against endothelial cell attachment to collagen I was attenuated or modulated in the presence of neutralizing antibodies of alpha(2), alpha(5)beta(1), and alpha(V)beta(3) integrins but not that of alpha(1) integrin. Our results suggest that endostatin might suppress the alpha(2)beta(1) integrin function of endothelial cells via alpha(5)beta(1) or alpha(V)beta(3) integrin. We propose here that endostatin might be effective for anti-angiogenic therapy for human chondrosarcomas through the suppression of alpha(2)beta(1) integrin functions in endothelial cells.  相似文献   

13.
Schwann cells provide a favorable microenvironment for successful regeneration of the injured peripheral nerve. Even though the roles of extracellular matrix proteins in the Schwann cell physiology have long been studied, the precise function of nidogen, a ubiquitous component of the basal lamina, in Schwann cells is unknown. In this study, we show that the protein and mRNA messages for nidogens are up-regulated in the sciatic nerve after sciatic nerve transection. We demonstrate that recombinant nidogen-1 increased the process formation of Schwann cells cultured from adult rat sciatic nerves and that nidogen-1 prevented Schwann cells from serum-deprivation-induced death. In addition, nidogen-1 promoted spontaneous migration of Schwann cells in two-independent migration assays. The Schwann cell responses to the recombinant nidogen-1 were specific because the nidogen-binding ectodomain of tumor endothelial marker 7 inhibited the nidogen responses without affecting Schwann cell response to laminin. Finally, we found that beta1 subunit-containing integrins play a key role in the nidogen-induced process formation, survival, and migration of Schwann cells. Altogether, these results indicate that nidogen has a prosurvival and promigratory activity on Schwann cells in the peripheral nerve.  相似文献   

14.
15.
The alpha4 laminin subunit regulates endothelial cell survival   总被引:3,自引:0,他引:3  
The alpha4 laminin subunit is a major structural component of assembling basement membranes of endothelial cells. We have been investigating its functions with regard to endothelial cell survival. An anti-laminin alpha4 antibody (2A3), directed against the G domain of the alpha4 laminin subunit of laminins-8 and -9, inhibits proliferation and enhances apoptosis of endothelial cells when cells are maintained in vitro. Activation of caspases-9 and -3 plays a role in 2A3 antibody-induced apoptosis, since inhibitors specific for these caspases and overexpression of the anti-apoptotic protein Bcl-X(L), but not c-FLIP, inhibit 2A3 antibody-triggered endothelial cell death. Extracellular matrix is known to play a role in regulating programmed cell death in an integrin-dependent fashion. The alpha4 laminin subunit conforms to this idea since activation of beta1 integrin subunits on endothelial cells blocks the ability of 2A3 antibody to induce endothelial cell death. In summary, our data indicate that complexes composed of alpha4 laminin/beta1 subunit-containing integrins at the cell surface support endothelial cell survival. Furthermore, we propose that antagonists of alpha4 laminin function, including antibody 2A3, have value as angiogenesis inhibitors in a clinical setting where blocking aberrant growth of blood vessel by triggering apoptosis of endothelial cells may be therapeutic.  相似文献   

16.
Regulated adhesion of leukocytes to the extracellular matrix is essential for transmigration of blood vessels and subsequent migration into the stroma of inflamed tissues. Although beta(2)-integrins play an indisputable role in adhesion of polymorphonuclear granulocytes (PMN) to endothelium, we show here that beta(1)- and beta(3)-integrins but not beta(2)-integrin are essential for the adhesion to and migration on extracellular matrix molecules of the endothelial cell basement membrane and subjacent interstitial matrix. Mouse wild type and beta(2)-integrin null PMN and the progranulocytic cell line 32DC13 were employed in in vitro adhesion and migration assays using extracellular matrix molecules expressed at sites of extravasation in vivo, in particular the endothelial cell laminins 8 and 10. Wild type and beta(2)-integrin null PMN showed the same pattern of ECM binding, indicating that beta(2)-integrins do not mediate specific adhesion of PMN to the extracellular matrix molecules tested; binding was observed to the interstitial matrix molecules, fibronectin and vitronectin, via integrins alpha(5)beta(1) and alpha(v)beta(3), respectively; to laminin 10 via alpha(6)beta(1); but not to laminins 1, 2, and 8, collagen type I and IV, perlecan, or tenascin-C. PMN binding to laminins 1, 2, and 8 could not be induced despite surface expression of functionally active integrin alpha(6)beta(1), a major laminin receptor, demonstrating that expression of alpha(6)beta(1) alone is insufficient for ligand binding and suggesting the involvement of accessory factors. Nevertheless, laminins 1, 8, and 10 supported PMN migration, indicating that differential cellular signaling via laminins is independent of the extent of adhesion. The data demonstrate that adhesive and nonadhesive interactions with components of the endothelial cell basement membrane and subjacent interstitium play decisive roles in controlling PMN movement into sites of inflammation and illustrate that beta(2)-integrins are not essential for such interactions.  相似文献   

17.
Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that alpha(v)beta(3) and alpha(v)beta(5), two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins alpha(v)beta(3) and alpha(v)beta(5) and their ligands to morphogenetic events in the human endocrine pancreas.  相似文献   

18.
RET is a member of the receptor tyrosine kinase (RTK) superfamily, which can transduce signalling by glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) in cultured cells. In order to determine whether in addition to being sufficient, RET is also necessary for signalling by these growth factors, we studied the response to GDNF and NTN of primary neuronal cultures (peripheral sensory and central dopaminergic neurons) derived from wild-type and RET-deficient mice. Our experiments show that absence of a functional RET receptor abrogates the biological responses of neuronal cells to both GDNF and NTN. Despite the established role of the RET signal transduction pathway in the development of the mammalian enteric nervous system (ENS), very little is known regarding its cellular mechanism(s) of action. Here, we have studied the effects of GDNF and NTN on cultures of neural crest (NC)-derived cells isolated from the gut of rat embryos. Our findings suggest that GDNF and NTN promote the survival of enteric neurons as well as the survival, proliferation and differentiation of multipotential ENS progenitors present in the gut of E12.5-13.5 rat embryos. However, the effects of these growth factors are stage-specific, since similar ENS cultures established from later stage embryos (E14. 5-15.5), show markedly diminished response to GDNF and NTN. To examine whether the in vitro effects of RET activation reflect the in vivo function(s) of this receptor, the extent of programmed cell death was examined in the gut of wild-type and RET-deficient mouse embryos by TUNEL histochemistry. Our experiments show that a subpopulation of enteric NC undergoes apoptotic cell death specifically in the foregut of embryos lacking the RET receptor. We suggest that normal function of the RET RTK is required in vivo during early stages of ENS histogenesis for the survival of undifferentiated enteric NC and their derivatives.  相似文献   

19.
Integrins are cell-surface receptors that mediate cell attachment to extracellular matrix components. The pericellular matrix in cartilage not only is a mechanical framework, but is also important for chondrocyte differentiation and stabilization of the phenotype. The interaction between chondrocytes and pericellular matrix is mediated, in part, by integrin receptors. We have previously demonstrated the presence of beta1-integrins in the cartilage matrix of organoid culture of limb buds from 12-day-old mouse embryos by immunohistological methods. In order to corroborate these findings, we have further investigated the distribution of integrins in the cartilage matrix by immunoelectron microscopy and by immunoprecipitation methods. Cartilage tissue of limb buds of 17-day-old mouse embryos was treated with collagenase and the cell-free and cellular protein-free supernatant was removed and used for immunoprecipitation experiments. Immunoprecipitation with antibodies against beta1-, alpha1-, alpha3-, and alpha5beta1-integrins and collagen type II, followed by immunoblotting with the same antibodies, demonstrated the presence of these integrins and collagen type II in the supernatant. The integrins found in the cartilage matrix could have been either secreted or shed by the cells. The question as to whether they have a function in the cartilage matrix, such as interlinking, in the matrix organization or in the stabilization of matrix components remains to be elucidated.  相似文献   

20.
We have previously shown that oligodendrocyte progenitor cells exhibit developmental switching between alphav-associated beta integrin subunits to sequentially express alphavbeta1, alphavbeta3 and alphavbeta5 integrins during differentiation in vitro. To understand the role that alphavveta3 integrin may play in regulating oligodendrocyte progenitor cell behaviour, cells of the rat cell line, CG-4, were genetically engineered to constitutively express alphavbeta3 integrin by transfection with full-length human beta3 integrin subunit cDNA. Time-lapse videomicroscopy showed no effect of beta3 expression on cell migration but revealed enhanced proliferation on vitronectin substrata. Comparison of mitotic indices, as measured by 5-bromo-2'-deoxyuridine incorporation, confirmed that human beta3 integrin-expressing cells exhibited enhanced proliferation, as compared to both vector-only transfected, and wild-type CG-4 cells when switched to differentiation medium from growth medium, but only in cultures grown on vitronectin and not on poly-D-lysine. The effects on proliferation were inhibited by a function-blocking antibody specifically directed against the human beta3 integrin subunit. Human beta3 integrin-expressing cells also exhibited reduced differentiation. This differentiation could be reduced still further by a function-blocking monoclonal antibody against alphavbeta5 integrin, as could differentiation in the wild-type CG-4 cells. Taken together, these results suggest that alphavbeta3 integrin may regulate oligodendroglial cell proliferation and that both downregulation of alphavbeta3 integrin expression and signalling through alphavbeta5 integrin may be critical to continued differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号