首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The mitotic figures in dividing cells of sea urchin embryos, from first division to the onset of cilia formation, were studied with regard to the filament system and its relation to kinetochores, chromosomes, and poles, as well as to fixation conditions which would best preserve these structures. With regard to fixation, variations in the salt concentration and pH of the fixative indicated that an extraction effect on the chromosomes noted in earlier work was probably due to a combination of neutral pH and salt concentration equivalent to sea water. The presence of the 15 mµ filaments depended on the presence of either of two stabilizing conditions: pH 6.1 or presence of the salts of sea water, presumably the divalent cations of Ca and Mg. Kinetochores and centrioles were unaffected by the fixative variations. The 15 mµ filaments, reported earlier in the central spindle, are also found in great numbers in the asters of early cleavage divisions. However, with successive divisions and reduction in cell size, the aster disappears at about the 32 to 64 cell stage, and the 15 mµ filaments are entirely associated with the central spindle. This disappearance of the aster suggests that it may be, in fact, merely a specialization of large cells for cytokinesis.  相似文献   

2.
FILAMENT LENGTHS IN STRIATED MUSCLE   总被引:12,自引:7,他引:5       下载免费PDF全文
Filament lengths in resting and excited frog muscles have been measured in the electron microscope, and investigations made of the changes in length that are found under different conditions, to distinguish between those changes which arise during preparation and the actual differences in the living muscles. It is concluded that all the measured differences in filament length are caused by the preparative procedures in ways that can be simply accounted for, and that the filament lengths are the same in both resting and excited muscles at all sarcomere lengths greater than 2.1 µ, viz., A filaments, 1.6 µ; I filaments, 2.05 µ. The fine periodicity visible along the I filaments also has been measured in frog, toad, and rabbit muscles and found to be 406 A.  相似文献   

3.
1. Structurally the "sensory bristles" in Euplotes patella are typical cilia, but no ciliary rootlets connect their bases. 2. The "neuromotor fibrils" are composed of filaments 21 mµ in diameter. At the point of junction of the filaments with the peripheral ciliary fibrils a granular structure 65 to 90 mµ in diameter is seen which has dense central and peripheral zones separated by a less dense layer. Information on the interconnection of organelles is expanded. 3. A system of subpellicular fibrils is described. The external fibrillar system described by others could not be found. 4. The motorium is shown to be a mass of intertwining rootlet filaments. 5. The micronucleus is shown to have a spongy, dense material in a less dense material, all of which is surrounded by a double-layered membrane. 6. The double-layered macronuclear membrane contains annuli whose outside diameter is 70 mµ; the macronuclear bodies are sometimes closely applied to the membrane. In the macronuclear reorganization bands, the solution plane is a fine network, while the reconstruction plane is devoid of structure at the level of resolution observed. 7. The mitochondria are composed of tubules, only occasionally oriented, usually embedded in a surrounding material of lower density. 8. Microbodies whose diameters are 250 to 350 mµ are frequently observed in close association with mitochondrial surfaces. 9. The food vacuoles, contractile vacuoles, and ciliary vacuoles are bounded by single-layered membranes. In the food vacuoles, the bacteria are surrounded by membranes individually or in small groups. 10. Cytoplasmic rods localized in the oral region, and cytoplasmic granules dispersed at random, are described. No typical ergastoplasm, endoplasmic reticulum, or Golgi material was observed.  相似文献   

4.
The structure of the femoral muscle of the cockroach, Leucophaea maderae, was investigated by light and electron microscopy. The several hundred fibers of either the extensor or flexor muscle are 20 to 40 µ in diameter in transverse sections and are subdivided into closely packed myofibrils. In glutaraldehyde-fixed and epoxy resin-embedded material of stretched fibers, the A band is about 4.5 µ long, the thin filaments are about 2.3 µ in length, the H zone and I band vary with the amount of stretch, and the M band is absent. The transverse sections of the filaments reveal in the area of a single overlap of thick and thin filaments an array of 10 to 12 thin filaments encircling each thick filament; whereas, in the area of double overlap in which the thin filaments interdigitate from opposite ends of the A band, the thin filaments show a twofold increase in number. The thick filament is approximately 205 to 185 A in diameter along most of its length, but at about 0.2 µ from the end it tapers to a point. Furthermore, some well oriented, very thin transverse sections show these filaments to have electron-transparent cores. The diameter of the thin filament is about 70 A. Transverse sections exhibit the sarcolemma invaginating clearly at regular intervals into the lateral regions of the A band. Three distinct types of mitochondria are associated with the muscle: an oval, an elongate, and a type with three processes. It is evident, in this muscle, that the sliding filament hypothesis is valid, and that perhaps the function of the extra thin filaments is to increase the tensile strength of the fiber and to create additional reactive sites between the thick and thin filaments. These sites are probably required for the functioning of the long sarcomeres.  相似文献   

5.
This study was undertaken to determine whether glycerol-extracted rabbit psoas muscle fibers can develop tension and shorten after being stretched to such a length that the primary and secondary filaments no longer overlap. A method was devised to measure the initial sarcomere length and the ATP-induced isotonic shortening in prestretched isolated fibers subjected to a small preload (0.02 to 0.15 P0). At all degrees of stretch, the fiber was able to shorten (60 to 75 per cent): to a sarcomere length of 0.7 µ when the initial length was 3.7 µ or less, and to an increasing length of 0.9 to 1.8 µ with increasing initial sarcomere length (3.8 to 4.4 µ). At sarcomere lengths of 3.8 to 4.5 µ, overlap of filaments was lost, as verified by electron microscopy. The variation in sarcomere length within individual fibers has been assessed by both light and electron microscopic measurements. In fibers up to 10 mm in length the stretch was evenly distributed along the fiber, and with sarcomere spacings greater than 4 µ there was only a slight chance of finding sarcomeres with filament overlap. These observations are in apparent contradiction to the assumption that an overlap of A and I filaments is necessary for tension generation and shortening.  相似文献   

6.
1. Saltants have been produced in the fungus Chaetomium globosum by longer wave lengths than previously reported—by 365 mµ and by a visible line 404 mµ. 2. Absence at these wave lengths of the K saltant, which is so abundant at short wave lengths, is marked. 3. Ratio of percentage irradiated spores germinating to control spores germinating decreases from 83 per cent at 265 mµ, a short ultraviolet wave length, to 57 per cent at 404 mµ, a visible violet wave length.  相似文献   

7.
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.  相似文献   

8.
Further evidence for fibrillar organization of the ground cytoplasm of Chaos chaos is presented. Fixations with osmium tetroxide at pH 6 or 8 and with glutaraldehyde at pH 6 or 7 were used on two preparations: (a) single actively streaming cells; (b) prechilled cells treated with 0.05% Alcian blue in the cold and returned to room temperature for 5–10 min. In addition, a 50,000 g pellet of homogenized cells was examined after fixation with glutaraldehyde-formaldehyde alone. In sections from actively streaming cells considerable numbers of filaments were observed in the uroid regions after glutaraldehyde fixation, whereas only traces of filaments were seen after osmium tetroxide fixation at either pH 6 or 8. Microtubules were not seen. In sections from dye-treated cells, filaments (4–6 mµ) and fibrils (12–15 mµ) were found with all three fixatives. The 50,000 g pellet was heterogeneous but contained both clumps of fibrils and single thick fibrils like those seen in the cytoplasm of dye-treated cells. Many fibrils of the same dimensions (12–15 mµ wide, 0.5 µ long) were also seen in the supernatant above the pellet. Negative staining showed that some fibrils separated into at least three strands of 4–6 mµ filaments.  相似文献   

9.
This study confirms and extends previous work on the lateral cilia of the fresh-water mussel, Elliptio complanatus, in support of a "sliding filament" mechanism of ciliary motility wherein peripheral filaments (microtubules) do not change length during beat (see Satir, 1967). Short sequences of serial sections of tips are examined in control (nonbeating) and activated (metachronal wave) preparations. Several different tip types, functional rather than morphogenetic variants, are demonstrated, but similarly bent cilia have similar tips. The peripheral filaments are composed of two subfibers: a and b. The bent regions of cilia are in the form of circular arcs, and apparent differences in subfiber-b length at the tip are those predicted solely by geometry of the stroke without the necessity of assuming filament contraction. Various subfibers b apparently move with respect to one another during beat, since small systematic variations in relative position can be detected from cilium to cilium. While subfiber-b lengths are uniform throughout, subfiber-a lengths are morphologically different for each filament: 8 and 3 are about 0.8 µ longer than 1, 4 and 5, but each unique length is independent of stroke position or tip type. Subfiber-a does not contract, nor does it move, e.g. slide, with respect to subfiber-b of the same doublet. The central pair of filaments extends to the tip of the cilium where its members fuse. Subunit assembly in ciliary microtubules is evidently precise. This may be of importance in establishing the relationships needed for mechanochemical interactions that produce sliding and beat.  相似文献   

10.
ASPECTS OF CILIARY FINE STRUCTURE IN EUPLOTES PATELLA   总被引:9,自引:8,他引:1       下载免费PDF全文
1. The functional unity of cirri and membranelles can result structurally only from extensions of the ciliary membrane. 2. The pellicle is composed of an outer pellicular membrane and an inner cytoplasmic membrane. 3. The ciliary rootlets are composed of numerous filaments 120 A in diameter with central areas of low density. They have no periodic structure. 4. The ciliary membrane is a double-layered structure continuous with the pellicular membrane. The cilia show the typical arrangement of nine double, peripheral and two single, central fibrils. All fibrils pass into the basal region, the peripheral ones joining with the rootlet filaments, while the central fibrils from the extreme proximal position of the basal region turn back toward the pellicle and appear to unite just beneath the cytoplasmic membrane. 5. The cilia (300 mµ diameter) taper at their tips to a diameter at least as small as 50 mµ. At a diameter of about 150 mµ, the fibrils begin to show a reduction in number. 6. The central ciliary fibrils may determine the possible directions of ciliary beat. These fibrils show an intrafibrillar structure in their basal portion, which involves regularly spaced 40 A granules. 7. These observations on Euplotes, together with the other evidence cited, are consistent with the hypothesis that ciliary motion is produced by the contraction of the peripheral fibrils, while the central fibrils perhaps determine the plane in which the cilia can bend.  相似文献   

11.
ULTRASTRUCTURE OF BARNACLE GIANT MUSCLE FIBERS   总被引:9,自引:3,他引:6       下载免费PDF全文
Increasing use of barnacle giant muscle fibers for physiological research has prompted this investigation of their fine structure. The fibers are invaginated by a multibranched system of clefts connecting to the exterior and filled with material similar to that of the basement material of the sarcolemmal complex. Tubules originate from the surface plasma membrane at irregular sites, and also from the clefts They run transversely, spirally, and longitudinally, making many diadic and some triadic contacts with cisternal sacs of the longitudinal sarcoplasmic reticulum. The contacts are not confined to any particular region of the sarcomere. The tubules are wider and their walls are thicker at points of contact with Z material. Some linking of the Z regions occurs across spaces within the fiber which contain large numbers of glycogen particles. A-band lengths are extremely variable, in the range 2.2 µm–20.3 µm (average 5.2 µm) Individual thick filaments have thin (110 Å) hollow regions alternating with thick (340 Å) solid ones. Bridges between thick filaments occur at random points and are not concentrated into an M band The thin:thick filament ratio is variable in different parts of a fiber, from 3:1 to 6:1. Z bands are basically perforated, but the number of perforations may increase during contraction.  相似文献   

12.
Action spectra for photoreactivation (light-induced recovery from ultraviolet radiation injury) of Escherichia coli B/r and Streptomyces griseus ATCC 3326 were determined. The spectral region explored was 365 to 700 mµ. The action spectrum for S. griseus differed from that for E. coli, indicating that the chromophores absorbing reactivating energy in the two species were not the same. Reactivation of S. griseus occurred in the region 365 mµ (the shortest wave length studied) to about 500 mµ, with the most effective wave length lying near 436 mµ. This single sharp peak in the spectrum at 436 mµ suggested the Soret band typical of porphyrins. Reactivation of E. coli occurred in the region 365 to about 470 mµ, with the most active wave length lying near 375 mµ. The single, non-pronounced peak near 375 was probably not due to a Soret band, and the identification of the substance absorbing reactivating light in E. coli is uncertain. In neither species was the region 500 to 700 mµ active. The implications of these action spectra and their differences are discussed.  相似文献   

13.
1. Irradiation with three short ultraviolet (UV) wave lengths, 226, 233, and 239 mµ rapidly immobilizes Paramecium caudatum, the dosage required being smaller the shorter the wave length. 85 per cent of paramecia immobilized with wave length 226 mµ recover completely. Recovery from immobilizing doses is less the longer the wave length. 2. Irradiation continued after immobilization kills the paramecia in a manner which is markedly different for very short (226, 233, and 239 mµ) and longer (267 mµ) wave lengths. 3. An action spectrum for immobilization in P. caudatum was determined for the wave lengths 226, 233, 239, 248, and 267 mµ, and found to resemble the absorption of protein and lipide in the wave length region below 248 mµ. Addition of these data to those of Giese (1945 b) gives an action spectrum resembling the absorption by albumin-like protein. 4. Division of P. caudatum is delayed by doses of wave lengths 226, 233, and 239 mµ which cause immobilization, the longest wave length being most effective. 5. Immobilization at any of the wave lengths tested (226, 233, 239, 248, 267 mµ) is not photoreversible when UV-treated paramecia are concurrently illuminated. 6. Division delay resulting from immobilizing doses of 226, 233, and 239 mµ is photoreversible by exposure to visible light concurrently with the UV. 7. Division delay induced by exposure to wave length 267 mµ is reduced by exposure to visible light applied concurrently with UV or immediately afterwards. 8. The data suggest that the shortest UV wave length tested (226 mµ) affects the cytoplasm selectively, because it is absorbed superficially as indicated by unilateral fluorescence in UV. Consequently it immobilizes paramecia rapidly but has little effect on the division rate because little radiation reaches the nucleus. 9. The data support the view that nuclear effects of UV are readily photoreversed but cytoplasmic effects are not.  相似文献   

14.
Rhodnius prolixus, a South American insect, molts five times in its development to an adult after emerging from the egg. Each molting cycle is triggered with a blood-meal. The ventral intersegmental abdominal muscles of Rhodnius develop during each molting cycle and are functional at molting. The fine structure of these fully developed muscles from fourth stage larval insects is studied. They have the characteristic structure of slow muscles. They have multiple motor nerve endings, and the myofibrils are poorly defined in cross-section. Longitudinal sections show long sarcomeres (8–10 µ), irregular Z-lines, and no apparent H zones. No M line is seen. Transverse sections through the A-band region show that each hexagonally arranged thick filament is surrounded by 12 thin filaments. Two thin filaments are shared by two neighboring thick filaments. The ratio of thin to thick filaments is 6:1. This structure is related to that found in vertebrate skeletal muscle and insect flight muscle.  相似文献   

15.
Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP·Mg2+-bound form (RecA·ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA·ATP. This work demonstrates that RecA·ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA·dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors.  相似文献   

16.
A hemagglutination-inhibitory mucoprotein from human urine has been studied with the electron microscope. It consists of filaments, with diameters of 40 to > 240 A, composed of smaller fibrils. In the two-dimensional projection of the electron micrographs, the single fibrils often show a zig-zag course with a periodicity of 100 to 140 A; the single branch of a zig-zag measures about 60 A in length and either 20 or 40 A in width. Still thinner fibrillar elements are observable with diameters of 10 A or less. In three-dimensional aspect, the zig-zag structure might be a helix. The fibril-bundle (or filament) reveals a complicated configuration. Heat treatment at 70°C shows some indication of denaturation (e.g. filaments are shorter), whereas at 80°C almost complete degradation of the protein into individual zig-zag elements or smaller pieces is attained. The interaction between influenza virus particles and inhibitory mucoprotein consists of the attachment of a fiber molecule to the virus projections at several sites and frequently on more than one virus particle.  相似文献   

17.
Sedimentation constants at infinite dilution have been found to be 1.89 and 4.06 for the somatic and capsular polysaccharides, respectively, from pneumococcus Type III. Intrinsic viscosities have been determined for the somatic and capsular polysaccharides of pneumococcus Type III using the Ostwald viscometer. Molecular weights and dimensions have been calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be prolate ellipsoids of revolution. Values for the somatic polysaccharide are: molecular weight, 26,400; diameter, 0.97 mµ; and length, 36.18 mµ. Values for the capsular polysaccharide are: molecular weight, 171,800; diameter, 1.04 mµ; and length, 177.87 mµ. The molecular weights were calculated for the somatic and capsular polysaccharides of pneumococcus Type III assuming the molecules to be flexible chains. The value of the molecular weight of the somatic polysaccharide is 31,500 and the value for the molecular weight of the capsular polysaccharide is 267,500. The molecules of both the somatic and capsular polysaccharides exhibit high degrees of asymmetry.  相似文献   

18.
Digitonin extracts have been prepared from the retinae of a dozen species of marine and euryhaline teleost fishes from turbid water habitats. Spectrophotometric analysis of the extracts shows that the photosensitive retinal pigments of these species have maximum absorption above 500 mµ. In nine species there are retinene1 pigments with λmax between 504 and 512 mµ. In the marine but euryhaline mullet, Mugil cephalus, there is a porphyropsin with λmax 520 mµ. A mixture of rhodopsin and porphyropsin in an extract of a marine puffer, Sphoeroides annulatus, was disclosed by partial bleaching with colored light. In addition, one other species has a 508 mµ pigment, of which the nature of the chromophore was not determined. The habitats in which these fishes live are relatively turbid, with the water greenish or yellowish in color. The spectral transmission of such waters is probably maximal between 520 and 570 mµ. It is suggested that the fishes have become adapted to these conditions by small but significant shifts in spectral absorption of their retinal pigments. These pigments are decidedly more effective than rhodopsin in absorption of wavelengths above 500 mµ. This offers a possible interpretation of the confusing array of retinal pigments described from marine and euryhaline fishes.  相似文献   

19.
Natural actomyosin at µ = 0.6 appears in various forms, including the regular arrowhead structures originally reported by Huxley (1), when it has been stained negatively with 1% uranyl acetate. In addition to the arrowheads, thin whiskers, 700–1200 A in length and 20 A in width, attached to the arm of the arrowheads have been demonstrated. The dimensions of the whiskers and arms of the arrowheads are practically the same as those of the light meromyosin (LMM) and the heavy meromyosin (HMM) moieties of the single myosin molecule, respectively. Changes in the electron microscopically distinguishable elements during aggregation of natural actomyosin on reduction of the ionic strength have been observed. At µ = 0.4, partial aggregation of the LMM whiskers begins to result in some parallel alignment of the arrowhead-bearing filaments (acto-HMM). In the range of µ = 0.3–0.1, the LMM whiskers merge into smooth filaments which are arranged alternatingly with arrowhead-bearing filaments. Thus, lateral aggregation of composite actomyosin filaments (acto-HMM + LMM whiskers) results with the LMM moieties as links. This view is supported by the following facts: (a) acto-HMM is devoid of whiskers and does not show lateral aggregation at µ = 0.1; (b) natural actomyosin digested with trypsin at µ = 0.6, which was followed by removal of LMM aggregates at low ionic strength, is essentially the same as acto-HMM at µ = 0.1; and (c) digestion with trypsin of natural actomyosin at µ = 0.2 for varying periods of time leads to a separation of arrowhead-bearing filaments from LMM aggregates.  相似文献   

20.
Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These particles were composed of aggregates of 2 to 3 mµ spherical particles. Extraction of glycogen with hot alkali reduced the sedimentation coefficient of native glycogen from 214 to 64.7 and the particle diameter from approximately 40 to 20 mµ and smaller. Cell division was synchronized by a repetitive 12-hour temperature cycle, and glycogen was measured at several times during the cell cycle. The temperature cycle consisted of 9.5 hours at 12°C and 2.5 hours at 27°C. Approximately 90 per cent of the cells divided during the last 1.5 hours of the warm period. The carbohydrate/protein ratio of cells at the end of the cold period was 0.27 and was reduced slightly during the warm period. Glucose was incorporated into glycogen during both periods, although the rate of incorporation was greater during the warm period. No preferential incorporation on the basis of particle size was noted. Incorporation was measured in both native glycogen and KOH-extracted glycogen. Tetrahymena glycogen is compared with rat liver glycogen previously isolated by similar procedures, and the significance of using combined rate-zonal and isopycnic centrifugation for isolating native glycogen is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号