首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
M I Avelda?o 《Biochemistry》1988,27(4):1229-1239
About one-fourth the phosphatidylcholines (PCs) from bovine disk photoreceptor membranes contain very long chain (24-36 carbons) polyunsaturated (4, 5, and 6 double bonds) fatty acids of the n-3 and n-6 series (VLCPUFA). Such fatty acids, exclusively occurring in dipolyunsaturated species, are esterified to the sn-1 position of their glycerol backbone, docosahexaenoate being the major fatty acid at sn-2. Chromatographically, such PCs display a weakly polar character relative to other species, ascribable to their exceedingly large number of carbons. After hexane extraction of lyophilized disks, PC is the major component of the fraction of lipids that remains associated with rhodopsin, followed by phosphatidylserine, while a large proportion of the phosphatidylethanolamine is removed. The fatty acid composition of the hexane-removable and protein-bound lipid fractions markedly differs, the latter being enriched in lipid species containing long-chain and very long chain polyenes. This is observed for all lipid classes except free fatty acids. VLCPUFA-containing PCs are the most highly concentrated species in the rhodopsin-associated lipid fraction. The very long chain polyenes these PCs have at sn-1 may account for their resistance to being separated from the protein. It is hypothesized that their unusually long polyenoic fatty acids could be well suited to partially surround alpha-helical segments of rhodopsin.  相似文献   

2.
The labeling of molecular species of phosphatidylcholine (PC) has been studied in bovine retinas incubated for 2 h with (1-14C)-labeled (n-6) eicosatetraenoate (n-3) docosapentaenoate and (n-3) docosahexaenoate (20:4, 22:5 and 22:6, respectively) and in four subcellular fractions isolated after such incubations. Of the total radioactivity incorporated in PC, the following percentages of the above fatty acids, respectively, are found in its dipolyunsaturated species: 58, 56 and 53% in rod outer segments; 29, 41 and 49% in mitochondria; 24, 28 and 39% in microsomes; 12, 14 and 16% in postmicrosomal supernatants; 28, 36 and 58% in entire retinas. The remainder percentages are in tetra-, penta- and hexaenoic species of PC, respectively. The levels of pentaenoic species in the PCs of all fractions are similar, while tetraenes are lowest and hexaenes highest in photoreceptor membranes. Dipolyunsaturated species are highly concentrated in photoreceptor membranes, but are minor components of mitochondrial, microsomal and cytosolic PC. The specific radioactivities of tetraenoic, pentaenoic and hexaenoic PCs are decreasingly lower in the following order: postmicrosomal supernatants, microsomes, mitochondria, photoreceptor membranes. In contrast, the specific radioactivities of dipolyunsaturated PCs are higher in mitochondria and microsomes than in the other fractions, especially with 22:5 and 22:6. It is suggested that mitochondria as well as the endoplasmic reticulum could play a role in the synthesis and further modifications of dipolyunsaturated PCs before being supplied to photoreceptor membranes.  相似文献   

3.
The synthesis of very long chain (C24 to C36) polyunsaturated (four, five and six double bonds) fatty acids (VLCPUFA) is investigated in bovine retina using [14C]acetate. Saturates on the one hand (mainly palmitate), and polyenes on the other (mainly VLCPUFA), incorporate most of the label found in lipids. Phosphatidylcholine (PC) is the most highly labelled lipid class, since both types of 14C-labelled fatty acids, but especially this novel series of VLCPUFA, are concentrated in this phospholipid. Radioactivity from [14C]acetate is found in very long chain tetra, penta and hexaenoic fatty acids of PC. The labelling of 20:4(n - 6), 20:5(n - 3), 22:5(n - 6) and 22:6(n - 3) is much lower than that of longer polyenes of each of these series, indicating that VLCPUFA are synthesized in situ by successive elongations of the above polyenes, pre-existing in retina lipids. In various subcellular fractions isolated from retinas after incubations with [14C]acetate (including cytosol, microsomes, mitochondria and photoreceptor membranes), the labelling of the VLCPUFA of PC is very high, even at relatively short intervals of incubation. The results suggest that not only the synthesis but also the intracellular traffic among membranes of VLCPUFA-containing species of PC are very active processes in the retina.  相似文献   

4.
Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.  相似文献   

5.
The effect of cholesterol on phospholipid acyl chain packing in bilayers consisting of highly unsaturated acyl chains in the liquid crystalline phase was examined for a series of symmetrically and asymmetrically substituted phosphatidylcholines (PCs). The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic structural properties of bilayers containing 30 mol % cholesterol. The bilayers were composed of symmetrically substituted PCs with acyl chains of 14:0, 18:1n9, 20:4n6, or 22:6n3, containing 0, 1, 4, or 6 double bonds, respectively, and mixed-chain PCs with a saturated 16:0 sn-1 chain and 1, 4, or 6 double bonds in the sn-2 chain. DPH excited-state lifetime was fit to a Lorentzian lifetime distribution, the center of which was increased 1-2 ns by 30 mol % cholesterol relative to the cholesterol-free bilayers. Lifetime distributions were dramatically narrowed by the addition of cholesterol in all bilayers except the two consisting of dipolyunsaturated PCs. DPH anisotropy decay was interpreted in terms of the Brownian rotational diffusion model. The effect of cholesterol on both the perpendicular diffusion coefficient D perpendicular and the orientational distribution function f(theta) varied with acyl chain unsaturation. In all bilayers, except the two dipolyunsaturated PCs, 30 mol % cholesterol dramatically slowed DPH rotational motion and restricted DPH orientational freedom. The effect of cholesterol was especially diminished in di-22:6n3 PC, suggesting that this phospholipid may be particularly effective at promoting lateral domains, which are cholesterol-rich and unsaturation-rich, respectively. The results are discussed in terms of a model for lipid packing in membranes containing cholesterol and PCs with highly unsaturated acyl chains.  相似文献   

6.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

7.
High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC > DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.  相似文献   

8.
Streptozotocin diabetes depresses delta 9, delta 6 and delta 5 fatty acid desaturases, decreasing arachidonic acid and increasing linoleic acid, but also unexpectedly increasing docosahexaenoic acid in the different phospholipids of liver microsomal lipids. 18:0/20:4n-6, 16:0/20:4n-6 and 16:0/18:2n-6 are the predominant phosphatidyl choline (PC) molecular species in control rats, determining mainly PC contribution to the dynamic and biochemical properties of this bilayer. Diabetes decreases 20:4n-6 containing species and increases 18:2n-6 and 22:6n-3 containing species, maintaining the bulk dynamic properties in the hydrophobic interior of the bilayer, but changing its biochemical properties. The different dynamic parameters were measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene (DPH), (4-trimethylammonium phenyl) 6-phenyl-1,3,5 (TMA-DPH) and 6-lauroyl-2,4-dimethyl aminonaphtalene (Laurdan). In the surrounding of the hydrophobic/hydrophilic interphase lipid molecules were less ordered and tightly packed in the diabetic samples, allowing a higher mobility of incorporated water molecules. The fact that diabetes decreases highly polyunsaturated acid of n-6 family, but increases docosahexaenoic acid, indicates the necessity of re-evaluating its effect in human physiology.  相似文献   

9.
Peroxidation is a well-known natural phenomenon associated with both health and disease. We compared the peroxidation kinetics of phosphatidylcholine (PC) molecules with different fatty acid compositions (i.e. 18:0, 18:1n-9, 18:2n-6, 20:4n-6 and 22:6n-3 at the sn-2 and 16:0 at sn-1 position) either as molecules free in solution or formed into liposomes. Fatty acid levels, oxygen consumption plus lipid hydroperoxide and malondialdehyde production were measured from the same incubations, at the same time during maximal elicitable peroxidation. PCs with highly peroxidizable fatty acids (i.e. 20:4n-6 and 22:6n-3) in the same incubation were found to be either fully peroxidized or intact. Rates of peroxidation of PCs with multiple bisallylic groups (i.e. 20:4n-6 and 22:6n-3) peroxidized at 2-3 times the rate per bisallylic bond than the same phospholipid with 18:2n-6. The results suggest that propagation of peroxidation (H-atom transfer) is firstly an intramolecular process that is several-fold faster than intermolecular peroxidation. PCs in solution peroxidized twice as fast as those in liposomes suggesting that only half of the phospholipids in liposomes were available to peroxidize i.e. the outer leaflet. Experiments on liposomes suggest that even after heavy peroxidation of the outer leaflet the inner leaflet is unaffected, indicating how cells may protect themselves from external peroxidation and maintain control over internal peroxidation. Intramolecular peroxidation may produce highly concentrated, localized sites of peroxidation product that together with internal control of peroxidation of the inner leaflet of membranes provide new insights into how cells control peroxidation at the membrane level.  相似文献   

10.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

11.
Dipolyunsaturated phosphatidylcholines from bovine retina contain a whole series of unusual fatty acids. Methyl esters from these acids are very strongly retained on polar and nonpolar gas-liquid chromatography stationary phases. On thin layers of silica-AgNO3, they separate as tetra-, penta-, and hexaenoic fatty acid methyl esters. After hydrogenation, the three polyunsaturated fractions give the same series of saturated methyl esters, having 20 (or 22)-36 carbon atoms. High pressure liquid chromatography, as well as gas-liquid chromatography, indicates that the new components of the three fractions are even-carbon homologs of well known polyenoic fatty acids of the n-6 and n-3 families, since they behave as series of 20-36-carbon tetraenoic (n-6), pentaenoic (n-3 and n-6), and hexaenoic (n-3) fatty acids. Their occurrence in phospholipid molecules also having docosahexaenoate (22:6) explains the separation of major dipolyunsaturated phosphatidylcholines from retina into dodecaenoic, undecaenoic, and decaenoic fractions after argentation thin layer chromatography. Using high pressure liquid chromatography, the latter are resolved into individual species having 10-12 double bonds and 42-58 carbon atoms. The unusual PCs are thus endowed not only with the highest degree of unsaturation, but with the longest hydrocarbon chains yet reported for vertebrate glycerophospholipids. It is shown that phosphatidylcholines containing the novel fatty acids are highly concentrated in photoreceptor membranes and that they occur in the retina of vertebrates so distant in evolution as fish, birds, and various mammals.  相似文献   

12.
The interaction of the surfactant octyl glucoside (OG) with dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), and soy bean phosphatidylcholine (soy bean PC) was studied using high-sensitivity titration calorimetry. We determined the partition coefficient of OG between water and lipid bilayers and the transfer enthalpy of the surfactant by addition of lipid vesicles to OG monomers or vice versa. Comparison with the micellization enthalpy of the surfactant gives information on differences in the hydrophobic environment of OG in a liquid-crystalline bilayer or a micelle. The average partition coefficient P in mole fraction units for xe≈0.12–0.2 decreases slightly from 4152 at 27°C to 3479 at 70°C for DMPC and from 4260 to 3879 for soy bean PC, respectively. The transfer enthalpy ΔHT of OG into lipid vesicles is positive at 27°C and negative at 70°C. Its temperature dependence is larger for the incorporation of OG into DMPC than into soy bean PC vesicles. It is concluded that OG in DMPC vesicles is better shielded from water than in soy bean PC vesicles or in micelles. Titration calorimetry was also used to determine the phase boundaries of the coexistence region of mixed vesicles and mixed micelles in the systems OG/DMPC, OG/DPPC, OG/DSPC, and OG/soy bean PC vesicles at 70°C in the liquid-crystalline phase. DMPC and soy bean PC solubilization was also studied at 27°C to investigate the effect of temperature. The effective surfactant to lipid ratios at saturation, Resat, for all PCs studied are in the range between 1.33–1.72 and the ratios at complete solubilization, Resol, are between 1.79–3.06. At 70°C, the Resat values decrease with increasing chain length of the saturated PC. The ratios depend also slightly on temperature and the degree of unsaturation of the fatty acyl chains. For the OG/soy bean PC system, the coexistence range for mixed vesicles and mixed micelles is larger than for the corresponding PCs with saturated chains.  相似文献   

13.
Tonon T  Harvey D  Larson TR  Graham IA 《FEBS letters》2003,553(3):440-444
Pavlova lutheri, a marine microalga, is rich in the very long chain polyunsaturated fatty acids (VLCPUFAs) eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Using an expressed sequence tag approach, we isolated a cDNA designated Pldes1, and encoding an amino acid sequence showing high similarity with polyunsaturated fatty acid front-end desaturases. Heterologous expression in yeast demonstrated that PlDES1 desaturated 22:5n-3 and 22:4n-6 into 22:6n-3 and 22:5n-6 respectively, and was equally active on both substrates. Thus, PlDES1 is a novel VLCPUFA Delta4-desaturase. Pldes1 expression is four-fold higher during the mid-exponential phase of growth compared to late exponential and stationary phases.  相似文献   

14.
Isolated mammalian cytochrome oxidase gave an Arrhenius plot with a break (Tb) at about 20 degrees C when assayed in a medium containing Emasol. The activation energies above and below 20 degrees C were 9.3 (EH) and 18.9 kcal/mol (EL), respectively. Isolated cytochrome oxidase was also incorporated into vesicles of dipalmitoyl phosphatidylcholine (DPPC, phase transition temperature Tt = 40 degrees C), dimyristoyl phosphatidylcholine (DMPC, Tt = 23 degrees C) and dioleoyl phosphatidylcholine (DOPC, Tt = -22 degrees C). The DPPC system showed a nearly linear Arrhenius plot between 9 and 36 degrees C with E = 22.8 kcal/mol. When cytochrome oxidase was resolubilized from the DPPC vesicles and assayed in solution a biphasic plot was obtained again. Cytochrome oxidase-DOPC was more active than the solubilized enzyme and exhibited a biphasic Arrhenius plot with Tb = 23 degrees C. EH and EL were 6.6 and 15.8 kcal/mol, respectively. The plot for the oxidase-DMPC also showed a break (Tb = 26 degrees C) with EH = 6.6 and EL = 26.6 kcal/mol. These results indicate that the break in the Arrhenius plot reflects primarily a structural transition in the cytochrome oxidase molecule between the "hot" and "cold" conformations, as proposed previously. This transition, as well as the molecular state of cytochrome oxidase, is affected by the physical state of the membrane lipids as reflected by changes in the kinetic properties.  相似文献   

15.
The effects of the organophosphorous insecticide fenitrothion (phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-nitrophenyl) ester; FS) on the physical state of pure dipalmitoyl (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes were investigated. FS lowers the phase transition temperature of DPPC. It has no large effects on the DPPC gel phase, but it increases the order of the liquid-crystalline state of DPPC and POPC. FS also decreases 1,6-diphenyl-1,3,5-hexatriene (DPH) lifetime (tau) in the DPPC and POPC liquid-crystalline states. Since a direct quenching of DPH emission by FS was ruled out, tau shortening is assigned to an increased water penetration in the bilayer. The effect of FS is different from most perturbing agents for which an increased order is accompanied by a higher tau. Furthermore, quenching of DPH by KI was increased by FS in POPC liposomes indicating an increased accessibility of the quencher to the hydrophobic core where DPH distributes. The effect of FS on dipole relaxation at the hydrophilic-hydrophobic interface of POPC bilayers was studied with 2-dimethylamino-6-lauroylnaphthalene (Laurdan). FS produces a decrease in Laurdan tau and a narrowing of its emission band. FS significantly increases the generalized polarization values at both emission band ends. These results indicate that FS may allow the coexistence of microdomains that have different physical properties.  相似文献   

16.
The properties of phosphatidylcholines (PCs) having a perdeuterated stearic acid, 18:0d35, in the sn-1 position and the fatty acid 18:0, 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:4 omega 6, 20:5 omega 3, or 22:6 omega 3 at the sn-2 position were investigated in a matrix of dioleoylphosphatidylethanolamine (DOPE) by 2H and 31P NMR spectroscopy. At a mole ratio of DOPE/PC = 5:1, the lipids form liquid crystalline lamellar phases below 40 degrees C and coexisting lamellar, inverse hexagonal (Hll), and cubic phases at higher temperatures. The sn-1 chain of the PCs in a DOPE matrix is appreciably more ordered than in pure PCs, corresponding to an increase in the hydrophobic bilayer thickness of approximately 1 A. Distearoylphosphatidylcholine in the DOPE matrix has a higher sn-1 chain order than the unsaturated PCs. We observed distinct differences in the lipid order of upper and lower sections of the hydrocarbon chains caused by changes of temperature, unsaturation, headgroups, and ethanol. Unsaturation lowers chain order, mostly in the lower third of the hydrocarbon chains. By contrast, the increase in chain order caused by the DOPE matrix and the decrease in order with increasing temperature have a constant magnitude for the upper two-thirds of the chain and are smaller for the lower third. Addition of 2 M ethanol reduced order parameters, in effect reversing the increase in chain order caused by the DOPE matrix.  相似文献   

17.
Fluorescence polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH) have been compared with the excimer/monomer fluorescence intensity ratio (I'/I) of 1,3-di(2-pyrenyl)propane, (2Py(3)2Py). This ratio permits evaluation of changes in fluidity of the outer regions of the bilayer, where 2Py(3)2Py preferentially distributes. On the other hand, fluorescence polarization of DPH reports the structural order of the bilayer core. In the fluid phase of DMPC bilayers, for lindane concentrations higher than 25 microM, the excimer/monomer fluorescence intensity ratio (I'/I) decreases, thus reflecting an order increase of the probe environment. However, in the same conditions, the fluorescence polarization of DPH is almost insensitive to any perturbation. Identical results have been obtained in other pure lipid bilayers, namely DPPC and DSPC. However, both probes detect disordering effects of lindane in the gel phase of these lipids. The pyrene probe, unlike DPH, is very sensitive to the pretransitions of DPPC and DSPC, removed in the presence of lindane. Both probes fail to detect any apparent effect of lindane in DMPC bilayers enriched with high cholesterol content (greater than 30 mol%). However, in DMPC bilayers with low cholesterol content (less than 30 mol%), for temperatures below the phase transition of DMPC, both probes detect fluidizing effects induced by lindane. Nevertheless, above the phase transition of DMPC, 2Py(3)2Py detects ordering effects of lindane, whereas DPH detects hardly any effect. These results in DMPC bilayers with low cholesterol content are qualitatively similar to those described for DMPC without cholesterol.  相似文献   

18.
The n-6 tetra- and pentaenoic fatty acids with carbon chain lengths greater than 32 found in normal brain are located predominantly in a separable species of phosphatidylcholine. A similar phospholipid is found in increased amounts in the brain of peroxisome-deficient (Zellweger's syndrome) patients, but the fatty acid composition differs in that penta- and hexaenoic derivatives predominate. Our data strongly suggest that the polyenoic very long chain fatty acids are confined to the sn-1 position of the glycerol moiety, while the sn-2 position is enriched in saturated, monounsaturated and polyunsaturated fatty acids with less than 24 carbon atoms. It is postulated that these unusual molecular species of phosphatidylcholine may play some, as yet undefined, role in brain physiology.  相似文献   

19.
Z Q Wang  H N Lin  C H Huang 《Biochemistry》1990,29(30):7072-7076
The successive high-resolution differential scanning calorimetric (DSC) thermograms for aqueous dispersions of a homologous series of mixed-chain phosphatidylcholines, C(X):C(X + 6)PC, have been recorded and analyzed. In this series of saturated mixed-chain phosphatidylcholines, the total number of carbon atoms in the sn-1 acyl chain increases from 11 to 20, and the sn-2 acyl chain is always 6 methylene units longer than the sn-1 acyl chain. In the initial heating DSC thermograms, two prominent endothermic transitions are detected for all the samples prepared from the various C(X):C(X + 6)PCs except C(12):C(18)PC. In contrast, a single exothermic transition is observed on cooling for all the samples except C(13):C(19)PC. The temperature difference between the two endothermic transitions increases linearly as the acyl chain length of C(X):C(X + 6)PC becomes progressively longer. Interestingly, the main phase transition occurs before the subtransition for C(11):C(17)PC dispersions. Our DSC data further demonstrate that the thermodynamic parameters (Tm, delta H, and delta S) associated with the main phase transition for fully hydrated C(13):C(19)PC and other identical MW phosphatidylcholines are inversely related to the corresponding values of the chain-length inequivalence (delta C/CL) for these lipids. This linear relationship can be employed to map the Tm values for aqueous dispersions prepared from a large number of mixed-chain phosphatidylcholines whose values of delta C/CL are within the range of 0.1-0.4.  相似文献   

20.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号