首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shared or unshared consensus decision in macaques?   总被引:2,自引:1,他引:1  
Members of a social group have to make collective decisions in order to synchronise their activities. In a shared consensus decision, all group members can take part in the decision whereas in an unshared consensus decision, one individual, usually a dominant member of the group, takes the decision for the rest of the group. It has been suggested that the type of decision-making of a species could be influenced by its social style. To investigate this further, we studied collective movements in two species with opposed social systems, the Tonkean macaque (Macaca tonkeana) and the rhesus macaque (Macaca mulatta). From our results, it appears that the decision to move is the result of the choices and actions of several individuals in both groups. However, this consensus decision involved nearly all group members in Tonkean macaques whereas dominant and old individuals took a prominent role in rhesus macaques. Thus, we suggest that Tonkean macaques display equally shared consensus decisions to move, whereas in the same context rhesus macaque exhibit partially shared consensus decisions. Such a difference in making a collective decision might be linked to the different social systems of the two studied species.  相似文献   

2.
Collective decision making and especially leadership in groups are among the most studied topics in natural, social, and political sciences. Previous studies have shown that some individuals are more likely to be leaders because of their social power or the pertinent information they possess. One challenge for all group members, however, is to satisfy their needs. In many situations, we do not yet know how individuals within groups distribute leadership decisions between themselves in order to satisfy time-varying individual requirements. To gain insight into this problem, we build a dynamic model where group members have to satisfy different needs but are not aware of each other''s needs. Data about needs of animals come from real data observed in macaques. Several studies showed that a collective movement may be initiated by a single individual. This individual may be the dominant one, the oldest one, but also the one having the highest physiological needs. In our model, the individual with the lowest reserve initiates movements and decides for all its conspecifics. This simple rule leads to a viable decision-making system where all individuals may lead the group at one moment and thus suit their requirements. However, a single individual becomes the leader in 38% to 95% of cases and the leadership is unequally (according to an exponential law) distributed according to the heterogeneity of needs in the group. The results showed that this non-linearity emerges when one group member reaches physiological requirements, mainly the nutrient ones – protein, energy and water depending on weight - superior to those of its conspecifics. This amplification may explain why some leaders could appear in animal groups without any despotism, complex signalling, or developed cognitive ability.  相似文献   

3.
Many animal species live as a group and must therefore move as such. Several authors have suggested that the mechanisms underlying collective movements in primate species appear to rely on complex cognitive skills, given their high level of cognitive abilities. However, recent studies have highlighted the fact that complex patterns do not necessarily imply complex mechanisms. We used a modeling approach to investigate the patterns of collective movement in a semi-free-ranging group of brown lemurs. We recorded via digital video cameras the order and joining latencies of the 11 individuals of the group during the departure time of spontaneous group movements. We then assessed whether mimetic mechanisms or the existence of a leader were underlying conditions for the joining process by testing 5 computer models relying respectively on 5 hypotheses: the independence of individuals, an anonymous mimetism, a mimetism according to kinship, a mimetism according to affiliation, and eventually the existence of a leader. We found that departure latencies, associations, and the order of individuals at departure time could all be explained by the mimetism according to affiliation model. Thus, an individual’s decision to join the collective movement or not depended on the decision taken by its preferred social partners. These results show the importance of social parameters in primate decision making and that the high cohesion displayed by the group members might not be constrained merely by ecological factors such as predation or foraging consideration.  相似文献   

4.
Individuals in groups, whether composed of humans or other animal species, often make important decisions collectively, including avoiding predators, selecting a direction in which to migrate and electing political leaders. Theoretical and empirical work suggests that collective decisions can be more accurate than individual decisions, a phenomenon known as the ‘wisdom of crowds’. In these previous studies, it has been assumed that individuals make independent estimates based on a single environmental cue. In the real world, however, most cues exhibit some spatial and temporal correlation, and consequently, the sensory information that near neighbours detect will also be, to some degree, correlated. Furthermore, it may be rare for an environment to contain only a single informative cue, with multiple cues being the norm. We demonstrate, using two simple models, that taking this natural complexity into account considerably alters the relationship between group size and decision-making accuracy. In only a minority of environments do we observe the typical wisdom of crowds phenomenon (whereby collective accuracy increases monotonically with group size). When the wisdom of crowds is not observed, we find that a finite, and often small, group size maximizes decision accuracy. We reveal that, counterintuitively, it is the noise inherent in these small groups that enhances their accuracy, allowing individuals in such groups to avoid the detrimental effects of correlated information while exploiting the benefits of collective decision-making. Our results demonstrate that the conventional view of the wisdom of crowds may not be informative in complex and realistic environments, and that being in small groups can maximize decision accuracy across many contexts.  相似文献   

5.
The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.  相似文献   

6.
The literature has been relatively silent about post-conflict processes. However, understanding the way humans deal with post-conflict situations is a challenge in our societies. With this in mind, we focus the present study on the rationality of cooperative decision making after an intergroup conflict, i.e., the extent to which groups take advantage of post-conflict situations to obtain benefits from collaborating with the other group involved in the conflict. Based on dual-process theories of thinking and affect heuristic, we propose that intergroup conflict hinders the rationality of cooperative decision making. We also hypothesize that this rationality improves when groups are involved in an in-group deliberative discussion. Results of a laboratory experiment support the idea that intergroup conflict –associated with indicators of the activation of negative feelings (negative affect state and heart rate)– has a negative effect on the aforementioned rationality over time and on both group and individual decision making. Although intergroup conflict leads to sub-optimal decision making, rationality improves when groups and individuals subjected to intergroup conflict make decisions after an in-group deliberative discussion. Additionally, the increased rationality of the group decision making after the deliberative discussion is transferred to subsequent individual decision making.  相似文献   

7.
Despite the complexity and variability of decision processes, motor responses are generally stereotypical and independent of decision difficulty. How is this consistency achieved? Through an engineering analogy we consider how and why a system should be designed to realise not only flexible decision-making, but also consistent decision implementation. We specifically consider neurobiologically-plausible accumulator models of decision-making, in which decisions are made when a decision threshold is reached. To trade-off between the speed and accuracy of the decision in these models, one can either adjust the thresholds themselves or, equivalently, fix the thresholds and adjust baseline activation. Here we review how this equivalence can be implemented in such models. We then argue that manipulating baseline activation is preferable as it realises consistent decision implementation by ensuring consistency of motor inputs, summarise empirical evidence in support of this hypothesis, and suggest that it could be a general principle of decision making and implementation. Our goal is therefore to review how neurobiologically-plausible models of decision-making can manipulate speed-accuracy trade-offs using different mechanisms, to consider which of these mechanisms has more desirable decision-implementation properties, and then review the relevant neuroscientific data on which mechanism brains actually use.  相似文献   

8.
9.
Performance analysis of MPI collective operations   总被引:1,自引:0,他引:1  
Previous studies of application usage show that the performance of collective communications are critical for high-performance computing. Despite active research in the field, both general and feasible solution to the optimization of collective communication problem is still missing. In this paper, we analyze and attempt to improve intra-cluster collective communication in the context of the widely deployed MPI programming paradigm by extending accepted models of point-to-point communication, such as Hockney, LogP/LogGP, and PLogP, to collective operations. We compare the predictions from models against the experimentally gathered data and using these results, construct optimal decision function for broadcast collective. We quantitatively compare the quality of the model-based decision functions to the experimentally-optimal one. Additionally, in this work, we also introduce a new form of an optimized tree-based broadcast algorithm, splitted-binary. Our results show that all of the models can provide useful insights into various aspects of the different algorithms as well as their relative performance. Still, based on our findings, we believe that the complete reliance on models would not yield optimal results. In addition, our experimental results have identified the gap parameter as being the most critical for accurate modeling of both the classical point-to-point-based pipeline and our extensions to fan-out topologies.
Jack J. DongarraEmail:
  相似文献   

10.
An important potential advantage of group-living that has been mostly neglected by life scientists is that individuals in animal groups may cope more effectively with unfamiliar situations. Social interaction can provide a solution to a cognitive problem that is not available to single individuals via two potential mechanisms: (i) individuals can aggregate information, thus augmenting their 'collective cognition', or (ii) interaction with conspecifics can allow individuals to follow specific 'leaders', those experts with information particularly relevant to the decision at hand. However, a-priori, theory-based expectations about which of these decision rules should be preferred are lacking. Using a set of simple models, we present theoretical conditions (involving group size, and diversity of individual information) under which groups should aggregate information, or follow an expert, when faced with a binary choice. We found that, in single-shot decisions, experts are almost always more accurate than the collective across a range of conditions. However, for repeated decisions - where individuals are able to consider the success of previous decision outcomes - the collective's aggregated information is almost always superior. The results improve our understanding of how social animals may process information and make decisions when accuracy is a key component of individual fitness, and provide a solid theoretical framework for future experimental tests where group size, diversity of individual information, and the repeatability of decisions can be measured and manipulated.  相似文献   

11.
Speed versus accuracy in collective decision making   总被引:16,自引:0,他引:16  
We demonstrate a speed versus accuracy trade-off in collective decision making. House-hunting ant colonies choose a new nest more quickly in harsh conditions than in benign ones and are less discriminating. The errors that occur in a harsh environment are errors of judgement not errors of omission because the colonies have discovered all of the alternative nests before they initiate an emigration. Leptothorax albipennis ants use quorum sensing in their house hunting. They only accept a nest, and begin rapidly recruiting members of their colony, when they find within it a sufficient number of their nest-mates. Here we show that these ants can lower their quorum thresholds between benign and harsh conditions to adjust their speed-accuracy trade-off. Indeed, in harsh conditions these ants rely much more on individual decision making than collective decision making. Our findings show that these ants actively choose to take their time over judgements and employ collective decision making in benign conditions when accuracy is more important than speed.  相似文献   

12.
When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break‐ups, and are therefore a fundamental driver of fusion–fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion–fission dynamics. Using movement data from GPS‐collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group – a tactic that led to energy‐rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion–fission dynamics and play an essential role in animal distribution.  相似文献   

13.
The control of behaviour is usually understood in terms of three distinct components: sensory processing, decision making and movement control. Recently, this view has been questioned on the basis of physiological and behavioural data, blurring the distinction between these three stages. This raises the question to what extent the motor system itself can contribute to the interpretation of behavioural situations. To investigate this question we use a neural model of sensory motor integration applied to a behaving mobile robot performing a navigation task. We show that the population response of the motor system provides a substrate for the categorization of behavioural situations. This categorization allows for the assessment of the complexity of a behavioural situation and regulates whether higher-level decision making is required to resolve behavioural conflicts. Our model lends credence to an emerging reconceptualization of behavioural control where the motor system can be considered as part of a high-level perceptual system.  相似文献   

14.
By putting effort into behaviours like foraging or scanning for predators, an animal can improve the correctness of its personal information about the environment. For animals living in groups, the individual can gain further information if it is able to assess public information about the environment from other group members. Earlier work has shown that consensus group decisions based upon the public information available within the group are more likely to be correct than decisions based upon personal information alone, given that each individual in a group has a fixed probability of being correct. This study develops a model where group members are able to improve their personal likelihood of making a correct decision by conducting some level of (costly) effort. I demonstrate that there is an evolutionarily stable level of effort for all the individuals within the group, and the effort made by an individual should decrease with increasing group size. The relevance of these results to social decision making is discussed: in particular, these results are similar to standard theoretical predictions about the amount of vigilance shown by individuals decreasing with increasing group size. However, this model suggests that these results could come about where individuals are coordinating their effort within the group (unlike standard models, which assume that all individual effort is independent of the actions of others). This ties in with experimental findings where individuals have been shown to monitor the efforts of others.  相似文献   

15.
Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graph of standard neural models can not be directly handled by digital hardware devices. More particularly, several works show that programmable digital hardware is a real opportunity for flexible hardware implementations of neural networks. And yet many area and topology problems arise when standard neural models are implemented onto programmable circuits such as FPGAs, so that the fast FPGA technology improvements can not be fully exploited. Therefore neural network hardware implementations need to reconcile simple hardware topologies with complex neural architectures. The theoretical and practical framework developed, allows this combination thanks to some principles of configurable hardware that are applied to neural computation: Field Programmable Neural Arrays (FPNA) lead to powerful neural architectures that are easy to map onto FPGAs, thanks to a simplified topology and an original data exchange scheme. This paper shows how FPGAs have led to the definition of the FPNA computation paradigm. Then it shows how FPNAs contribute to current and future FPGA-based neural implementations by solving the general problems that are raised by the implementation of complex neural networks onto FPGAs.  相似文献   

16.
17.
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.  相似文献   

18.
Predicting species distributions for conservation decisions   总被引:1,自引:0,他引:1  
Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on‐ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision‐making contexts when used within a structured and transparent decision‐making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision‐making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.  相似文献   

19.
Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred.  相似文献   

20.
A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation of medical observations for the purposes of decision support. However, building decision support models using such techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain knowledge. This paper describes an approach for developing a decision support model in medical domains that are underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号