首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.  相似文献   

2.
Forty-one Bacillus thuringiensis (Bt) standard reference strains and 118 Bt local isolates were screened for vip1/vip2 genes by PCR amplification, with only three strains (HD201, HD109 and HD12) producing the desired bands. Southern blot showed that vip1/vip2 genes were located on a 10 Kb EcoRV fragment of their total DNAs. Furthermore, the vip1Ca/vip2Ac genes were cloned from a partial genomic library of HD201. Sequence homologous analysis revealed that vip2Ac gene was highly conserved and encoded a protein possibly having ADP-ribosyltransferase activity, and that vip1Ca gene was of low homology, especially at its 3-terminus. Western blot showed that Vip1Ca and Vip2Ac proteins could be detected from middle logarithmic phase to the stationary phase in Bt HD201. However, bioassays of HD201 supernatants exhibited no activity against Culex quinquefasciatus, Spodoptera exigua, S. litura, Helicoverpa amigera and Tenebrio molitor larvae. Whether Vip1Ca and Vip2Ac proteins have any toxicity to other susceptible targets still needs to be investigated.  相似文献   

3.
苏云金芽孢杆菌vip3A基因的检测及保守性分析   总被引:5,自引:0,他引:5  
Vip3A蛋白是苏云金芽孢杆菌(Bacillus thuringiensis,Bt)在营养期分泌的一类新型杀虫蛋白。用PCR方法从114个Bl菌株和41个Bl标准菌株中筛选到39株即约25%的菌株含有vip3A基因。利用所制备的Vip3A蛋白的多克隆抗体对以上含有vip3A基因的Bt菌株进行Western印迹分析,发现多数PCR反应为阳性的菌株都产生89kD大小的蛋白,其中有4株没有Vip3A蛋白的表达。从以上菌株中挑选2个对夜蛾科害虫具有较高和较低毒力的菌株,即S101和6ll,并分别进行vip3A基因的克隆和测序,再与GenBank上所登录的其它6个全长vip3A基因和2个已报道的但未登录GenBank的vip3A基因进行核苷酸和氨基酸序列比较,结果表明,vip3A是一个极其保守的基因。将以上所克隆的2个却3A基因即vip3A—S101和vip3A-611分别插入表达载体pQE30构建了表达质粒pOTP-S101和pOTP-6ll,转化到大肠杆菌M15,经lmmol/L IPTG诱导后均表达89kD大小的Vip3A蛋白。蛋白可溶性试验表明,Vip3A-S101和Vip3A-611分别有48%和35%的蛋白是可溶的。将Vip3A-S101和Vip3A-6ll蛋白和已报道的Vip3A—S184蛋白对初孵斜纹夜蛾(Spodoptera litura)幼虫进行生物测定,结果表明,3个Vip3A蛋白对斜纹夜蛾幼虫毒力没有显著性差异,这说明了Vip3A个别氨基酸的变化对蛋白的杀虫活性没有影响。  相似文献   

4.
AIMS: To search for novel Vip3A proteins for controlling insect pests. METHODS AND RESULTS: A pair of universal primers was designed based on the conserved regions of five vip3A genes. Amplified products were digested with the HindIII and EcoR enzymes so as to confirm different restriction fragment length polymorphism (RFLP) patterns used to identify vip3A-type genes. The vip3A gene types of 606 Bacillus thuringiensis strains were screened and three patterns of RFLP were successfully identified. Two novel vip3A genes were found and one of these, vip3Aa19, was further characterized and its product was confirmed toxic to Spodoptera exigua, Helicoverpa armigera and Plutella xylostella larvae. Partial sequences of another novel vip3A-type gene were obtained that shared 83% homology with that of the vip3Af1 gene. CONCLUSIONS: A polymerase chain reaction (PCR)-RFLP system we developed could be used for identifying novel vip3A-genes from B. thuringiensis strains. A novel Vip3A protein was found to have a broader insecticidal spectrum. SIGNIFICANCE AND IMPACT OF THE STUDY: The reported method is a powerful tool to find novel Vip3A proteins from large-scale B. thuringiensis strains. The novel Vip3A protein may be used to control insect pests or resistant insect pests by constructing genetically engineered strains or transgenic plants.  相似文献   

5.
Vegetative insecticidal protein (Vip) is a newly discovered family of toxin protein isolated from Bacillus thuringiensis (Bt). An 88.5-kDa Vip3Aa protein was secreted by a local strain of the bacterium during the vegetative growth phase. The full length of the coding region ‘2.3 kbp’ of the vip3Aa gene was isolated from plasmid DNA, cloned in pGEM-T vector and finally cloned in pQE-30 expression vector. Nucleotide sequence revealed 98% homology with that of the previously isolated genes. Expression of the vip3Aa in Escherichia coli was carried out and the expressed protein was detected in the concentrated supernatant, not in the pellet. This indicated that vip3Aa is secreted into the culture medium. Expressed protein was purified, blotted, and assayed against the cotton leaf worm Spodoptera littoralis. The LC50 was found to be 142.4 µ/mL while the LC50 was 90 ppm for the wild strain. These results suggest the use of either the isolated Bt strains or the expressed vip3Aa in an integrated pest management program against lepidopteran insect pests.  相似文献   

6.
《Biological Control》2013,67(3):141-149
A Spanish Bacillus thuringiensis strain collection was screened for the presence of vip genes. One hundred strains from a Canary Island collection were screened for vip1 and vip2 genes and 7% contained potentially novel vip1 and vip2-like genes, as indicated by the low degree of similarity with previously known vip1 and vip2 genes. Four hundred strains from a collection originating from the Spanish mainland were screened for vip3 genes and 14.5% of them contained potentially novel vip3-like genes. Reconstruction of the full-length vip sequences could only be achieved for two vip3 gene variants encoding 789 and 787 amino acid proteins that were designated as Vip3Aa45 and Vip3Ag4, respectively. These proteins showed 82% pairwise identity between them and differed from Vip3Aa1 in the putative signal peptide, two specific proteolytic processing sites and the 66-kDa insecticidal fragment. The purified proteins were tested against nine lepidopteran pest species and displayed toxicity, expressed as mean lethal concentration, for five of them. The two toxins were highly toxic for Lobesia botrana (∼1–2 μg/ml) and Spodoptera littoralis (∼20 ng/cm2), moderately toxic for Spodoptera exigua (∼100–300 ng/cm2), and varied greatly in their toxicity for Mamestra brassicae or Chrysodeixis chalcites, with high toxicity for Vip3Aa45 in M. brassicae (∼40 ng/cm2) and for Vip3Ag4 in C. chalcites (∼45 ng/cm2).  相似文献   

7.
A PCR-restriction fragment length polymorphism (PCR-RFLP) method for identifying vegetative insecticidal protein (vip) 1-type genes from Bacillus cereus was developed by designing specific primers based on the conserved regions of the genes to amplify vip1-type gene fragments. PCR products were digested with endonuclease AciI, and four known vip1-type genes were identified. Vip1Ac and vip1Aa-type genes appeared in 17 of 26 B. cereus strains. A novel vip1-type gene, vip1Ac1, was identified from B. cereus strain HL12. The vip1Ac1 and vip2Ae3 genes were co-expressed in Escherichia coli strain BL21 by vector pCOLADuet-1. The binary toxin showed activity only against Aphis gossypii (Homoptera), but not for Coleptera (Tenebrio molitor, Holotrichia oblita), Lepidoptera (Spodoptera exigua, Helicoverpa armigera, and Chilo suppressalis), Diptera (Culex quinquefasciatus). The LC(50) of this binary toxin for A. gossypii is 87.5 (34.2-145.3) ng mL(-1) . This is probably only the second report that Vip1 and Vip2 binary toxin shows toxicity against homopteran pests. The PCR-RFLP method developed could be very useful for identifying novel Vip1-Vip2-type binary toxins, and the novel binary toxins, Vip1Ac1 and Vip2Ae3, identified in this study may have applications in biological control of insects, thus avoiding potential problems of resistance.  相似文献   

8.
克隆了Bt9816C的vip3A基因,并将测序结果提交到GenBank(序列号:AY945939)。该基因是一个新的vip3Aa基因,Bt杀虫晶体蛋白命名委员会将其命名为vip3Aa18。在大肠杆菌BL21中表达了该基因,生物测定结果表明纯化的Vip3Aa18蛋白对棉铃虫和甜菜夜蛾具有很高的杀虫活性。序列分析结果显示Vip3Aa18C端536至667位氨基酸残基间是一个糖类结合域,推测可能参与Vip3Aa18与敏感昆虫中肠受体结合;N端272至292位氨基酸残基间存在一个跨膜螺旋,可能与Vip3Aa18形成穿孔有关。此外,Vip3Aa18还可能具有一个二硫键。这些特殊区域和位点可能与其功能密切相关。  相似文献   

9.
苏云金杆菌vip3A基因的克隆、表达及杀虫活性分析   总被引:5,自引:0,他引:5  
用全长PCR方法从野生型苏云金杆菌(Bacillus thuringiensis ,Bt)菌株S184中克隆了2.3kb大 vip3A基因并进行了序列分析。将vip3A-S184基因插入表达载体pQE30构建了表达质粒pOTP,转化大肠杆菌M15,转化子经1mmol/L IPTG诱导后可表达89kD大小的Vip3A-S184蛋白,并得到Western blot证实。蛋白可溶性试验表明,目的蛋白中约有19%是可溶的,用透射电镜观察到大多数蛋白是以包涵体形式存在的。因此,可以在自然条件下进行目的蛋白的纯化和对家兔进行免疫制备多克隆抗体,用于苏云金杆菌Vip3A蛋白表达的检测。利用IPTG进行诱导培养的菌液对甜菜夜蛾(Spodoptera exigua),斜纹夜蛾(S.litura)和棉铃虫(Helicoverpa armigera)等3种害虫的初孵幼虫进行生物测定,结果表明,Vip3A-S184蛋白对夜蛾科害虫具有较高的杀虫活性。  相似文献   

10.
The insecticidal and psychrotropic potential of 132 new isolates of Bacillus thuringiensis from northeastern Poland (74 from animals and 58 from soil) were determined by screening these for vip and cry genes encoding, respectively, vegetative insecticidal proteins (Vip) and Cry proteins, and cspA that encoded the CspA cold shock protein that confers psychrotropy in Bacillus species. The vip3A gene, encoding Vip3A toxic to lepidopterans, was found in ~5% of the isolates from animals and ~17% the isolates from soil, whereas coleopteran-specific vip1 and vip2 genes were present in 8% of the isolates from soil. Nucleotide sequences of vip3A-specific amplicons were highly conserved, with only a few containing minor differences from vip3A. Despite the high level of vip3A conservation, isolates harbouring the gene demonstrated a high level of heterogeneity based on whole-cell genomic DNA RFLP analysis with pulsed-field gel electrophoresis (PFGE) and plasmid profiling. Eight isolates positive for vip3A contained cry1 and six also harboured the cry2 gene, which encodes an endotoxin toxic to lepidopteran insects. However, none of these isolates contained cry genes coding for proteins toxic to coleopteran or dipteran insects. Due to the known potential for synergistic interactions between Vip and Cry proteins, the isolates positive for vip3A and cry genes may be used in resistance management strategies directed against lepidopteran larvae. Finally, all of the B. thuringiensis vip3A-positive isolates harboured the cspA gene, but only two were confirmed to be psychrotrophs.  相似文献   

11.
Photorhabdus temperata and Bacillus thuringiensis are entomopathogenic bacteria exhibiting toxicities against different insect larvae. Vegetative Insecticidal Protein Vip3LB is a Bacillus thuringiensis insecticidal protein secreted during the vegetative growth stage exhibiting lepidopteran specificity. In this study, we focused for the first time on the heterologous expression of vip3LB gene in Photorhabdus temperata strain K122. Firstly, Western blot analyses of whole cultures of recombinant Photorhabdus temperata showed that Vip3LB was produced and appeared lightly proteolysed. Cellular fractionation and proteinase K proteolysis showed that in vitro-cultured recombinant Photorhabdus temperata K122 accumulated Vip3LB in the cell and appeared not to secrete this protein. Oral toxicity of whole cultures of recombinant Photorhabdus temperata K122 strains was assayed on second-instar larvae of Ephestia kuehniella, a laboratory model insect, and the cutworm Spodoptera littoralis, one of the major pests of many important crop plants. Unlike the wild strain K122, which has no effect on the larval growth, the recombinant bacteria expressing vip3LB gene reduced or stopped the larval growth. These results demonstrate that the heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata could be considered as an excellent tool for improving Photorhabdus insecticidal activities.  相似文献   

12.
Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.  相似文献   

13.
AIMS: Studies were performed to demonstrate the function of the putative signal peptide of Vip3A proteins in Escherichia coli. METHODS AND RESULTS: The full-length vip3A-S184 gene was isolated from a soil-isolated Bacillus thuringiensis, and the vip3AdeltaN was constructed by deleting 81 nucleotides at the 5'-terminus of vip3A-S184. Both were transformed and expressed in E. coli. About 19.2% of Vip3A-S184 proteins secreted soluble proteins and others formed inclusion bodies in the periplasmic space. In contrast, the Vip3AdeltaN was insoluble and formed inclusion bodies in the cytoplasm. Bioassay indicated that Vip3A-S184 showed different toxicity against Spodoptera exigua, Helicoverpa armigera and S. litura, but Vip3AdeltaN showed no toxicity to either of them because of the deletion of the first 27 amino acids at the N-terminus. CONCLUSIONS: The results suggest that the deleted N-terminal sequences were essential for the secretion of Vip3A-S184 protein in E. coli and might be required for toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY: The function of the putative signal peptide of Vip3A protein in E. coli was investigated. These would be helpful to make clear the unknown secretion pathway of Vip3A protein in B. thuringiensis and determine the receptor-binding domain or toxic fragment of Vip3A-S184 protein.  相似文献   

14.
枯草芽胞杆菌Bacillus subtilis常被用于表达杀虫和抗菌蛋白.为了探讨苏云金芽胞杆菌B. thuringiensis营养期杀虫蛋白基因(vip3A)在枯草芽胞杆菌中的表达情况,促进杀虫防病工程菌构建,将枯草芽胞杆菌168菌株核糖体小亚基S4蛋白基因的启动子与苏云金芽胞杆菌WB7菌株vip3A基因的编码序列连接,插入大肠杆菌Escherichia coli与枯草芽胞杆菌穿梭载体pAD123,得到重组原核表达质粒pADpvip,将重组质粒转化枯草芽胞杆菌标准菌株168和分离自辣椒体内的生防内生枯草芽胞杆菌BS-2菌株中,获得工程菌株.SDS-PAGE分析表明在枯草芽胞杆菌168菌株的部分工程菌株中有约88 kDa大小的VIP条带,而BS-2的工程菌株中未见相应的条带,表明Vip3A蛋白仅在168菌株中表达.生物测定表明有5株168的工程菌株(168vip1-4,6)表现较高的杀虫活性,工程菌株发酵稀释液(约107CFU/mL)处理的小白菜叶片饲喂斜纹夜蛾2龄幼虫72 h的杀虫效果可达87.64%~92.13%,但vip3A基因转入内生枯草芽胞杆菌BS-2中不表现杀虫作用.毒力测定表明168vip2菌株对斜纹夜蛾2龄幼虫72 h的LC50为0.0194 mL/mL.这些结果为进一步研究基因在枯草芽胞杆菌中的表达构建杀虫防病工程菌打下了基础.  相似文献   

15.
Twenty-four serovars of Bacillus thuringiensis (Bt) were screened by polymerase chain reaction to detect the presence of vegetative insecticidal protein gene (vip)-like sequences by using vip3Aa1-specific primers. vip-like gene sequences were identified in eight serovars. These genes were cloned and sequenced. The deduced amino acid sequence of the vip3Aa14 gene from Bacillus thuringiensis tolworthi showed considerable differences as compared to those of Vips reported so far. The vip3Aa14 gene from Bt tolwarthi was expressed in Escherichia coli using expression vector pET29a. The expressed Vip3Aa14 protein was found in cytosolic supernatant as well as pellet fraction, but the protein was more abundant in the cytosolic supernatant fraction. Both full-length and truncated (devoid of signal sequence) Vips were highly toxic to the larvae of Spodoptera litura and Plutella xylostella. Truncation of Vip3Aa14 protein at N-terminus did not affect its insecticidal activity.  相似文献   

16.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

17.
18.
Culture supernatant of Bacillus thuringiensis 9816C had high toxicity against Helicoverpa armigera and Spodoptera exigua. However, it lost insecticidal activities after being bathed in boiling water for 5 min. Acrystalliferous mutants of Bt9816C (Bt9816C-NP1 and Bt9816C-NP2) cured of its endogenous plasmids no longer possessed vip3A gene and toxicity. The 89 kD protein which existed in Bt9816C supernatant disappeared in the two mutants' supernatant; nevertheless, the two mutants still exhibited hemolytic and phospholipase C activity as Bt9816C did. The vip3A gene of Bt9816C, vip3Aa18, was cloned and expressed in Escherichia coli BL21. Bioassay demonstrated that the recombinant E. coli had high toxicity against S. exigua. Taken together, it suggested that Vip3A protein was responsible for the toxicity of Bt9816C culture supernatants.  相似文献   

19.
Little is known about the occurrence and linkage between secreted insecticidal virulence factors in natural populations of Bacillus thuringiensis (Bt). We carried out a survey of 392 Bt strains isolated from various samples originating from 31 countries. The toxicity profile of the culture supernatants of these strains was determined individually against Anthonomus grandis (Coleoptera) and Spodoptera littoralis (Lepidoptera). We analyzed -exotoxin I production and searched for the genes encoding Vip1–2, Vip3, and Cry1I toxins in 125 of these strains. Our results showed that these insecticidal toxins were widespread in Bt but that their distribution was nonrandom, with significant linkage observed between vip3 and cry1I and between vip1–2 and -exotoxin I. Strains producing significant amounts of -exotoxin I were more frequently isolated from invertebrate samples than from dust, water, soil, or plant samples.  相似文献   

20.
The fall armyworm, Spodoptera frugiperda (J. E. Smith), and southwestern corn borer, Diatraea grandiosella Dyar, are major insect pests of maize, Zea mays L., in the southern USA. Both insects feed extensively on leaves of plants in the whorl stage of growth. A diallel cross of seven inbred lines with different levels of susceptibility to leaf feeding damage in the field was evaluated in a laboratory bioassay for fall armyworm and southwestern corn borer larval growth. Diets were prepared from lyophilized leaf tissue of field-grown plants of the inbred lines and their 21 F1 hybrids. One inbred line, Tx601, exhibited heavy leaf damage in field tests but showed moderate resistance in the laboratory bioassay. Both general and specific combining ability were highly significant sources of variation in the inheritance of fall armyworm and south-western corn borer larval growth in the laboratory bioassay. Tx601 showed excellent general combining ability for reduced larval growth of both species.This article is a contribution of the United States Department of Agriculture, Agricultural Research Service, in cooperation with the Mississippi Agricultural and Forestry Experiment Station. Journal No. J-8525  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号