首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Seasonal changes in the content of dehydrins in Asian white birch (Betula platyphylla Sukacz.) growing under extreme cold conditions of Eastern Siberia (Central Yakutia) were studied for the first time by SDS-PAGE and immunoblotting. Several polypeptides, including putative storage proteins, which content was higher in winter than in other periods, were observed. Intraspecies polymorphism of dehydrins was detected during plant dormancy. The two groups of dehydrins were found: dehydrins with mol wts of 56-73 kD, which were present year-round, and dehydrins with mol wts of 15–21 kD, evidently related to the development of frost resistance because they were absent in summer but present in large amounts in winter. Under low winter temperatures, the highest level of dehydrins coincided with the lowest content of water in buds, which was accompanied by increased plant frost resistance to the highest values.  相似文献   

2.
This is the first study to investigate stress proteins dehydrins with the use of specific antibodies in the Scots pine (Pinus sylvestris L.) needles and their changes in the annual cycle under extreme climate of Yakutia. No pronounced polymorphism of major dehydrins (14–15 and 66 kDa) has been found during the winter dormancy period of P. sylvestris. A clear correlation between the seasonal variations in dehydrins and changes in the water content in needles was revealed. Consistently high levels of dehydrins was retained throughout the period of low negative temperatures. It is assumed that dehydrins can participate in the formation of P. sylvestris L. resistance to the permafrost conditions.  相似文献   

3.
Seasonal changes in the pattern and content of dehydrins in winter wheat (Triticum aestivum) plants grown under field and laboratory conditions were studied by one-dimensional PAGE and immunochemical methods. During hardening, plants accumulated dehydrin-like polypeptides with mol wts of 209, 196, 66, 50, and 41 kD. In winter, low-molecular-weight dehydrins with mol wts of 24, 22, 17, 15, and 12 kD were synthesized and accumulated as well. Their content dropped sharply in spring when plants became unhardened. Accumulation/disappearance of these proteins corresponded to the fluctuations in wintering plant frost tolerance before winter and in spring. It is assumed that both high- and medium-molecular-weight dehydrins are involved in plant stress responses and adaptation, whereas low-molecular-weight dehydrins are evidently involved only in the process of low-temperature adaptation.  相似文献   

4.
The fatty acid (FA) composition of callus lipids in two pine species, Pinus sibirica Du Tour and P. sylvestris L. was studied. Callus lipids were characterized by a high content of unsaturated FAs: 81.7% in P. sibirica and 63.2% in P. sylvestris. Among them, oleic and linoleic acids predominated (22.9 and 34.0% of total FAs in P. sibirica and 17.6 and 27.8% in P. sylvestris, respectively). Callus lipids also contained Δ5-UPIFA (unsaturated polymethyle-interrupted FAs), where pinoleic and sciadonic acids predominated. A comparison of FAs in the lipids of P. sylvestris calluses derived from needle and needle photosynthesizing tissues of this pine species showed that callus lipids were characterized by a greater diversity of Δ5-UPIFA but a lower degree of FA unsaturation and he higher level of Δ5-UPIFA.  相似文献   

5.
In mitochondria from the crowns of field-grown winter wheat plants or their seedlings hardened in the laboratory, thermostable proteins immunologically related to dehydrins were detected. It was found that two dehydrins with mol wts of 63 and 52 kD bound with the outer mitochondrial membrane during autumnal hardening or during adaptation to low temperature in the laboratory. Dehydrins of similar mol wts were detected among proteins in the total membrane fraction from low-temperature-adapted wheat plants. In addition, dehydrins with mol wts of 209 and 196 kD were present in this fraction as well. Dehydrins of similar mol wts were bound with mitochondria from seedlings adapted to low temperature and those from the crowns of plants after autumnal hardening. In spring, the amount of dehydrins associated with mitochondria from the crowns declined to the level characteristic of early autumn. Dehydrin association with mitochondria is evidently an important defense mechanism of frost-resistant plants.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 221–226.Original Russian Text Copyright © 2005 by Borovskii, Stupnikova, Antipina, Anuchina, Voinikov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

6.
Using one-dimensional SDS-PAGE and immunochemical methods, we detected the presence and estimated the content of dehydrins and ABA-inducible (RAB) polypeptides in etiolated seedlings of four spring and three winter wheat (Triticum aestivum L.) cultivars differing in frost hardiness. We hardened three-day-old seedlings at 4°C for nine days or grew them at 22°C for a day (control seedlings). We established that heat-stable cold-regulated (COR) polypeptides with mol wts of 209, 196, 169, 66, 50, and 41 kD, which are characteristic of hardened wheat seedlings, were homologous to polypeptides from a dehydrin family and polypeptides with mol wts of 209, 196, 66, 50, and 41 kD were immunologically related to RAB-proteins. We supposed that these COR polypeptides were involved in the prevention of local protein dehydration and denaturation during hypothermia. Analysis of the relative content of COR proteins revealed a close correlation between the cultivar frost hardiness and the concentration of these proteins. It seems evident that different accumulation of dehydrins and RAB polypeptides in different cultivars of a single species is one of the causes for different plant frost hardiness.  相似文献   

7.
Dehydrin stress proteins were identified in buds of silver birch (Betula pendula Roth) grown in regions with contrasting climate, Karelia and Central Yakutia, using specific antibodies. Two types of dehydrins present in the plant buds, proteins with average (56–73 kDa) and low (14–21 kDa) molecular weight, as well as 17-kDa dehydrin, were detected in all studied plants. The most sensitive to seasonal changes are 14- to 21-kDa dehydrins, the level of which, regardless of the region where the birch grows, significantly increased during the autumn–winter period. The intraspecific polymorphism of dehydrins was more pronounced in B. pendula grown under the sharply continental climate of Yakutia, which is probably due to the peculiarities of the adaptation of woody plants to the extremely low temperatures of the cryolitic zone.  相似文献   

8.
Loss of apical dominance is a well-known boron (B) deficiency symptom in trees. Recent field studies indicate that B deficiency may cause irreversible damage in emerging leader buds leading to bushy growth, and changes in developing needles in mature Norway spruce trees. We experimentally studied if timing of B application affects needles and buds of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings with low initial B levels. The treatments were: no B (B0); B supply from the beginning of the simulated summer (B1); starting soon after bud burst (B2) and starting at the occurrence of first needle primordia in new spruce buds (B3). At the end of the experiment, B concentration in B1 was 23 mg kg−1 (pine) or 17 mg kg−1 (spruce) and lower in the later applications. In B0 it was at deficiency limit. In B0, B2 and B3, there were fewer sclerenchyma cells, and cavities occurred in vascular cylinders in pine needles, and in spruce buds there were more tanniferous cells in the primordial shoots compared to B1. Furthermore, in all but B1 there was cell collapse in the bud apex of some spruce seedlings. The experimentally induced changes were the same as earlier reported in B deficient conifers in the field, and indicate, similarly as in the field that adequate B is necessary throughout the growing season for healthy growth, particularly for spruce. The differences between spruce and pines are due, at least partly, to the differences in time frame of needle development and in the differences in development of conducting tissues in the buds.  相似文献   

9.
The composition and seasonal dynamics of stress proteins-dehydrins in the buds of the main birch species (downy birch (Betula pubescens Ehrh.), silver birch (B. pendula Roth)) and its varieties (Karelian birch (B. pendula var. carelica (Mercklin) Hämet-Ahti)), growing in northwest Russia (on the example of the Republic of Karelia) were investigated for the first time. It was shown that the level of low-molecular dehydrins, mainly with a molecular mass of 17 kD, is subjected to major seasonal changes, regardless of the specific features of the birch. The maximal level of 17 kD dehydrin was formed during the autumn preparation of plants to dormancy and was persistently preserved during the cold period of the year. The content of medium-molecular weight dehydrins of 66–69 kD was almost at the same level all year round. Significant inter-and intraspecific polymorphism of the major dehydrins of 17 and 66–69 kD in the buds of downy birch, silver birch, and Karelian birch during dormancy was not found. The significant similarity in the composition of total proteins and dehydrins, as well as the uniform nature of their seasonal changes, mainly 17 kD dehydrin, indicates the phylogenetic proximity and similar mechanisms of adaptation of the main species of the genus Betula L. to the temperate continental climate of Karelia.  相似文献   

10.
Changes of morphogenic competence in mature P. sylvestris L. buds due to frozen storage were investigated. The highest callus formation was registered on explants stored at –18°C for three months, but on explants stored for five months, it was also higher than in the control. Budding and development of needles in vitro was observed only for buds frozen three to five months. Peroxidase activity was lowest in these buds. In contrast, polyphenol oxidase activity in bud tissues continually increased during frozen storage. Within 10 months of frozen storage the content of starch and sugars in resting buds changed. It may be concluded that changes in composition of non-structural sugars in pine buds after five months of frozen storage are part of metabolic changes leading to loss of morphogenic capacity.  相似文献   

11.
Trienoic fatty acids (FAs) have been found to be the dominant group of unsaturated fatty acids in the composition of phospholipids (PLs) from Larix sibirica Ledeb., whereas dienoic FAs have been established to prevail in PLs from Picea obovata L. and Pinus sylvestris L. Bud swelling in spring is accompanied by a decrease in the content of unsaturated FAs by approximately 30%. The analysis of the change in the content of individual C18 FAs in the PL structure upon the transition of the tree from winter dormancy to vegetation has revealed the important functional role of acyl-lipid ω6 desaturase, which is responsible for the synthesis of linoleic acid (C18: 2), in the formation of the cryoprotected state of meristem cell membranes of Larix sibirica Ledeb., Picea obovata L., and Pinus sylvestris L. In addition, the particular significance of acyl-lipid ω3 desaturase for the cryoadaptation of meristem cells in Larix sibirica Ledeb., as it catalyzes the transformation of linoleic acid (C18: 2) to linolenic acid (C18: 3) in PLs of larch 1.5–3 times more intensively than in the case of spruce and pine, is shown.  相似文献   

12.
We studied seasonal changes in the content and ratio between photosynthetic pigments in one-yearold needles of Scotch pine (Pinus sylvestris L.) growing in Central Yakutia. Maximum accumulation of chlorophylls in developed young needles occurred in July when light and temperature conditions were favorable. In this period, the needles were notable for a relatively high level of β-carotene and neoxanthin and a reduced content of lutein and the pigments of violaxanthin cycle (VXC). In the course of autumn hardening, the content of chlorophylls decreased two times. Total content of carotenoids remained the same, but pigment composition considerably changed when plants progressed from a vegetating to frost-resistant state. We revealed time and temperature ranges of variation for individual carotenoids. In the beginning of hardening at reduced and low abovezero temperatures, the content of β-carotene in the needles decreased, the pigment-protein complexes (PPC) became enriched in lutein, the pigment pool of VXC gradually increased, and the content of neoxanthin transiently rose. When average daily air temperature further decreased to near- zero values, the content of zeaxanthin sharply rose. In winter, high levels of lutein and zeaxanthin were maintained. Main changes in pigment complex of the needles of P. sylvestris were completed before the coming of steady below-zero temperatures. The obtained data suggested that, upon seasonal decrease in temperature in early stages of hardening, a decrease in the level of chlorophyll promotes a reduction in the quantity of absorbed radiant energy. Apparently, this is accompanied by activation of the role of lutein and neoxanthin that perform specific photoprotective functions in antenna PPC associated with a gradual decrease in plants’ ability to quench singlet energy of excited chlorophyll. Accumulation of zeaxanthin as a result of inhibition of back reaction of epoxidation at near-zero temperatures creates necessary prerequisites for turning on the mechanisms of steady dissipation of absorbed light energy, which do not depend on transmembrane proton gradient of thylakoids. At the same time, zeaxanthin can perform antioxidant functions both in PPC and in the lipid phase of thylakoid membranes. The obtained data point to an adaptive nature of the observed reactions and a specific role of individual pigments in structural and functional reorganization of photosynthetic machinery in the course of development of frost-resistance in the needles.  相似文献   

13.
Changes in the fatty acid (FA) composition of leaf and root lipids of heat-loving tobacco (Nicotiana tabacum L., cv. Samsun) plants during low-temperature hardening (8°C for 6 days) were studied. Hardening could improve leaf but not root cold tolerance. As this took place, the relative content of polyunsaturated (18:2n-6 and 18:3n-3) FAs increased and the proportion of saturated and monounsaturated FAs decreased. In contrast, in the roots hardening slightly increased the concentration of saturated FAs (16:0 and 18:0) and reduced the level of unsaturated FAs (18:1n-9, 18:2n-6, and 18:3n-3). At the same time, root lipids contained much C20–24 FAs, and their content increased during hardening. It was suggested that an increased FA saturation and elevated proportion of C20–24 FAs in the root lipids resulting in the lower membrane fluidity could be a reason for incapability of heat-loving tobacco plant roots of hardening and plant death at the lowtemperature stress.  相似文献   

14.
Shoot multiplication of Larixdecidua was achieved using axillary and adventitious buds. The formation of axillary buds was stimulated on shoot tips soaked in a cytokinin solution (BAP 10-50 mg 1−1 for 2–4 h. Adventitious buds were induced on cotyledons, needles and vegetative buds cultured on WPM or QL medium supplemented with cytokinin (BAP 1–3 mg 1−1). The shoot formation from induced axillary and adventitious buds was promoted on WPM or QL medium containing a low concentration of auxin (IBA 0.1 mg 1−1). Shoot multiplication of Pinussylvestris was stimulated on WPM, MS, and QL media supplemented with a low concentration of cytokinin (BAP 0.2 mg 1−1) and auxin (IBA 0.1 mg 1−1). Shoot segments produced 2–5 new axillary shoots within 4–5 weeks. Root initiation was stimulated on larch and pine shoots cultured first on WPM supplemented with auxins (NAA and IBA) and later transferred to auxin-free medium.  相似文献   

15.
Plants of extremophile Thellungiella (Thellungiella salsuginea (Pall.) OE Schulz) withstood freezing at ?15°C for 2 h without hardening, whereas plants of Arabidopsis (Arabidopsis thaliana (L.) Heinh.) were damaged at ?10°C and died at ?15°C under these conditions. The content of heat shock proteins (HSPs) HSP101, HSP60 and constitutive HSC70 was significantly higher in unhardened Thellungiella plants than in unhardened Arabidopsis plants. The spectrum of dehydrins (DHNs) in unhardened Thellungiella plants was more diverse and their total content was higher than in unhardened Arabidopsis plants. Frost resistance of Arabidopsis increased after hardening (4°C, 7 days), and there was an increase in the content of HSP101 and HSP60, as well as in the content of the DHN with a mol wt of 70 kD. Thellungiella plants survived after hardening at ?18°C, and the increase in the content of HSP101, HSP70, and HSP60 was significantly less pronounced than in Arabidopsis. At the same time, the content of DHNs in Thellungiella increased significantly during the hardening primarily because of the appearance of two DHNs (mol wts of 42 and 45 kD). It is assumed that an increased content of HSPs and DHNs and their greater diversity can be one of the factors of Thellungiella resistance to low temperatures as compared to Arabidopsis.  相似文献   

16.
 11 needle characters of Pinus uncinata Ramond from the Spanish Pyrenees, P. mugo Turra from the Tatra Mountains, and P. sylvestris L. from N.E. Poland were analysed. It was shown that P. uncinata is much more closely related to P. mugo than to P. sylvestris. Nevertheless P. uncinata remains distinct from both in a number of the characters examined. The species differs from P. mugo especially in the length of the needles and in the distance between the vascular bundles. It differs from P. sylvestris in such characters as the number of resin canals, thickness of epidermis cells and the distance between the vascular bundles. Width of epidermis cells was similar in all taxa studied. Received May 31, 2000 Accepted February 13, 2001  相似文献   

17.
This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Δ3-carene and α-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, α-pinene concentration (also representing β-pinene, Δ3-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of α-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in α-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g−1 dry matter) quantities of either Δ3-carene or α-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in α-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A. ater as a selective force on the evolution of defensive chemistry in P. sylvestris.  相似文献   

18.
The polypeptide composition and functional activity of cell-wall lectins from roots of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) seedlings during cold hardening were studied. Several phases of lectin activity changes were observed, which indicates their involvement in the development of general adaptation syndrome of the cell. After 0.5-h low-temperature treatment, marked alterations occurred in the profile of protein elution: lectins with mol wts of 78 and 42.5 kD disappeared and new ones with mol wts of 72, 69, 37, and 34.5 kD appeared. It was established that 17.5-and 69-kD lectins and most lectins eluted with glucose were arabinogalactan proteins (AGP), which permitted a supposition that these lectins were involved in the interaction between the cell wall and cytoskeleton. After 7-day-long hardening, total protein content reduced and lectins with mol wts of 69 and 37 kD disappeared, which corresponded to reduced lectin activity by the end of hardening. A transient appearance of 37-and 69-kD lectins, which are AGP, might indicate their involvement in the triggering the development of plant-cell defense responses.  相似文献   

19.
Measurements of dependence of photosynthetic electron transport on irradiance and analyses of stable isotope ratios (δ18O, δ13C, δ15N) were performed on 4 to 6-year-old pine trees (Pinus sylvestris L.) in the primeval forest reserve of Białowieża and on 21-year-old pine trees of a plantation of different provenances at the Sękocin Forest Station near Warsaw, Poland. Small differences in maximum photosynthetic electron transport rates, ETRmax were related to growth. Stable isotope analyses suggest that water relations play an important role for the performance of P. sylvestris at the sites studied. The intraspecific comparisons showed a very high variability of photosynthetic capacity between needles of given trees and between individual trees under similar conditions. Differences between specific provenances were also observed. This is relevant for ecological niche occupation in a wide geographical growth range, where P. sylvestris is actually occurring. The high physiological plasticity demonstrated reveals a conspicuous trait of this tree species.  相似文献   

20.
The fraction of heat-stable dehydrins cytosolic proteins from mature recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) was studied in the period of their dormancy and germination in order to identify and characterize stress-induced dehydrin-like polypeptides. In our experiments, in tissues of dormant seeds, dehydrin was identifies by immunoblotting as a single bright band with a mol wt of about 50 kD. Low-molecular-weight heat-stable proteins with mol wts of 25 kD and below 16 kD, which were abundant in this fraction, did not cross-react with the antibody. Dehydrin was detected in all parts of the embryo: in the cells of axial organs, cotyledon storage parenchyma, and petioles of cotyledonary leaves. This indicates the absence of tissue-specificity in distribution of these proteins in the horse chestnut seeds. Dehydrins were detected among heat-stable proteins during the entire period of stratification and also radicle emersion. During radicle emergence, not only the fraction of heat-stable proteins was reduced but also the proportion of dehydrins in it decreased. In vitro germination of axes excised at different terms of stratification also resulted in dehydrin disappearance. When growth of excised axes was retarded by treatments with ABA, cycloheximide, or α-amanitin, dehydrins did not disappeared from the fraction of heat-stable proteins. When excised axes were germinated in vitro in the presence of compounds, which did not affect their growth or stimulated it (dehydrozeatin, glucose), this resulted in dehydrin disappearance. This means that dehydrin metabolism is closely related to the process of germination. Dehydrin in the horse chestnut seeds could cross-react with the antibody against ubiquitin, which can indicate the involvement of ubiquitination in the process of dehydrin degradation during germination via the proteasome system. The analysis of total proteins of the homogenate from horse chestnut seeds revealed, along with a 50-kD heat-stable dehydrin, one more component with a mol wt of 80 kD, which was located in the fraction of heat-sensitive proteins and was named as a dehydrin-like protein. It was demonstrated that dehydrins in horse chestnut seeds represented only a very small fraction of heat-stable cytosolic proteins. The role and function of major heat-stable proteins in horse chestnut seeds are yet to be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号