首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Navigating the epigenetic landscape of pluripotent stem cells   总被引:1,自引:0,他引:1  
Pluripotent stem cells, which include embryonic stem cells and induced pluripotent stem cells, use a complex network of genetic and epigenetic pathways to maintain a delicate balance between self-renewal and multilineage differentiation. Recently developed high-throughput genomic tools greatly facilitate the study of epigenetic regulation in pluripotent stem cells. Increasing evidence suggests the existence of extensive crosstalk among epigenetic pathways that modify DNA, histones and nucleosomes. Novel methods of mapping higher-order chromatin structure and chromatin-nuclear matrix interactions also provide the first insight into the three-dimensional organization of the genome and a framework in which existing genomic data of epigenetic regulation can be integrated to discover new rules of gene regulation.  相似文献   

2.
徐燕宁  关娜  张庆华  雷蕾 《生命科学》2008,20(2):231-236
人类的胚胎干细胞(embryonic stem cells,ES cells)可以用来治疗很多疾病,但是如果通过核移植来获得与供体或者患者相匹配的ES细胞,就会受到人卵母细胞来源等条件的制约。这就促使了将体细胞重编程为多潜能细胞这样一种技术策略的发展,其中包括将分化细胞与ES细胞融合,在卵细胞、ES细胞或多潜能癌细胞的抽提物中孵育,强制多潜能因子过表达等具体的方法。通过这些途径引出了一些核功能的重编程以及相应的DNA甲基化修饰、组蛋白翻译后修饰,使体细胞表达特定的多潜能因子,转变为类似胚胎干细胞的多潜能细胞。  相似文献   

3.
4.
SC Tobin  K Kim 《FEBS letters》2012,586(18):2874-2881
Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)-derived by ectopic expression of four reprogramming factors in donor somatic cells-are superior in terms of ethical use, histocompatibility, and derivation method. However, iPSC also show genetic and epigenetic differences that limit their differentiation potential, functionality, safety, and potential clinical utility. Here, we discuss the unique characteristics of iPSC and approaches that are being taken to overcome these limitations.  相似文献   

5.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

6.
Studies are beginning to emerge that demonstrate intriguing differences between human‐induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated the expression of key members of the Nodal embryonic signaling pathway, critical to the maintenance of pluripotency in hESCs. Western blot and real‐time RT‐PCR analyses reveal slightly lower levels of Nodal (a TGF‐β family member) and Cripto‐1 (Nodal's co‐receptor) and a dramatic decrease in Lefty (Nodal's inhibitor and TGF‐β family member) in hiPSCs compared with hESCs. The noteworthy drop in hiPSC's Lefty expression correlated with an increase in the methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental question related to the consequences of epigenetically reprogramming hiPSCs, especially with respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs (miRs) in two hiPSC versus four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs with >10‐fold difference, which have been shown to be cancer related. These data demonstrate cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on future therapies. J. Cell. Physiol. 225: 390–393, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
《Molecular cell》2023,83(2):203-218.e9
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
10.
The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington''s classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process.  相似文献   

11.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

12.
Embryonic stem cells (ESCs) are apparently homogeneous self-renewing cells, but we observed heterogeneous expression of Stella in ESCs, which is a marker of pluripotency and germ cells. Here we show that, whereas Stella-positive ESCs were like the inner cell mass (ICM), Stella-negative cells were like the epiblast cells. These states were interchangeable, which reflects the metastability and plasticity of ESCs. The established equilibrium was skewed reversibly in the absence of signals from feeder cells, which caused a marked shift toward an epiblast-like state, while trichostatin A, an inhibitor of histone deactelylase, restored Stella-positive population. The two populations also showed different histone modifications and striking functional differences, as judged by their potential for differentiation. The Stella-negative ESCs were more like the postimplantation epiblast-derived stem cells (EpiSCs), albeit the stella locus was repressed by DNA methylation in the latter, which signifies a robust epigenetic boundary between ESCs and EpiSCs.  相似文献   

13.
Progression to malignancy requires that cells overcome senescence and switch to an immortal phenotype. Thus, exploring the genetic and epigenetic changes that occur during senescence/immortalization may help elucidate crucial events that lead to cell transformation. In the present study, we have globally profiled DNA methylation in relation to gene expression in primary, senescent and immortalized mouse embryonic fibroblasts. Using a high-resolution genome-wide mapping technique, followed by extensive locus-specific validation assays, we have identified 24 CpG islands that display significantly higher levels of CpG methylation in immortalized cell lines as compared to primary murine fibroblasts. Several of these hypermethylated CpG islands are associated with genes involved in the MEK–ERK pathway, one of the most frequently disrupted pathways in cancer. Approximately half of the hypermethylated targets are developmental regulators, and bind to the repressive Polycomb group (PcG) proteins, often in the context of bivalent chromatin in mouse embryonic stem cells. Because PcG-associated aberrant DNA methylation is a hallmark of several human malignancies, our methylation data suggest that epigenetic reprogramming of pluripotency genes may initiate cell immortalization. Consistent with methylome alterations, global gene expression analysis reveals that the vast majority of genes dysregulated during cell immortalization belongs to gene families that converge into the MEK–ERK pathway. Additionally, several dysregulated members of the MAP kinase network show concomitant hypermethylation of CpG islands. Unlocking alternative epigenetic routes for cell immortalization will be paramount for understanding crucial events leading to cell transformation. Unlike genetic alterations, epigenetic changes are reversible events, and as such, can be amenable to pharmacological interventions, which makes them appealing targets for cancer therapy when genetic approaches prove inadequate.  相似文献   

14.
We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pluripotency of iPS cells. High expression of Oct4 and Klf4 combined with lower expression of c-Myc and Sox2 produced iPS cells that efficiently generated "all-iPSC mice" by tetraploid (4n) complementation, maintained normal imprinting at the Dlk1-Dio3 locus, and did not create mice with tumors. Loss of imprinting (LOI) at the Dlk1-Dio3 locus did not strictly correlate with reduced pluripotency though the efficiency of generating "all-iPSC mice" was diminished. Our data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells. This concept complicates efforts to define a "generic" epigenetic state of iPSCs and ESCs and should be considered when comparing different iPS and ES cell lines.  相似文献   

15.
16.
Avian pluripotent stem cells   总被引:11,自引:0,他引:11  
Pluripotent embryonic stem cells are undifferentiated cells capable of proliferation and self-renewal and have the capacity to differentiate into all somatic cell types and the germ line. They provide an in vitro model of early embryonic differentiation and are a useful means for targeted manipulation of the genome. Pluripotent stem cells in the chick have been derived from stage X blastoderms and 5.5 day gonadal primordial germ cells (PGCs). Blastoderm-derived embryonic stem cells (ESCs) have the capacity for in vitro differentiation into embryoid bodies and derivatives of the three primary germ layers. When grafted onto the chorioallantoic membrane, the ESCs formed a variety of differentiated cell types and attempted to organize into complex structures. In addition, when injected into the unincubated stage X blastoderm, the ESCs can be found in numerous somatic tissues and the germ line. The potential give rise to somatic and germ line chimeras is highly dependent upon the culture conditions and decreases with passage. Likewise, PGC-derived embryonic germ cells (EGCs) can give rise to simple embryoid bodies and can undergo some differentiation in vitro. Interestingly, chicken EG cells contribute to somatic lineages when injected into the stage X blastoderm, but only germ line chimeras have resulted from EGCs injected into the vasculature of the stage 16 embryo. To date, no lines of transgenic chickens have been generated using ESCs or EGCs. Nevertheless, progress towards the culture of avian pluripotent stem cells has been significant. In the future, the answers to fundamental questions regarding segregation of the avian germ line and the molecular basis of pluripotency should foster the full use of avian pluripotent stem cells.  相似文献   

17.
Induced pluripotent stem cells (iPS) result from a reprogramming of somatic cells via transduction with viral vectors expressing the Oct4, Sox2, c-Myc, Klf4, Nanog, and Lin28 genes, which are essential for the establishment and maintenance of the pluripotent state. In properties, iPS are almost fully similar to embryonic stem cells (ESC). To date, iPS have been obtained from various differentiated cells of mice and humans. Along with ESC, iPSs are highly promising for research and medicine.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号