首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Cold-stimulated adaptive thermogenesis in brown adipose tissue (BAT) to increase energy expenditure is suggested as a possible therapeutic target for the treatment of obesity. We have recently shown high prevalence of BAT in adult humans, which was inversely related to body mass index (BMI) and body fat percentage (BF%), suggesting that obesity is associated with lower BAT activity. Here, we examined BAT activity in morbidly obese subjects and its role in cold-induced thermogenesis (CIT) after applying a personalized cooling protocol. We hypothesize that morbidly obese subjects show reduced BAT activity upon cold exposure.

Methods and Findings

After applying a personalized cooling protocol for maximal non-shivering conditions, BAT activity was determined using positron-emission tomography and computed tomography (PET-CT). Cold-induced BAT activity was detected in three out of 15 morbidly obese subjects. Combined with results from lean to morbidly obese subjects (n = 39) from previous study, the collective data show a highly significant correlation between BAT activity and body composition (P<0.001), respectively explaining 64% and 60% of the variance in BMI (r = 0.8; P<0.001) and BF% (r = 0.75; P<0.001). Obese individuals demonstrate a blunted CIT combined with low BAT activity. Only in BAT-positive subjects (n = 26) mean energy expenditure was increased significantly upon cold exposure (51.5±6.7 J/s versus 44.0±5.1 J/s, P = 0.001), and the increase was significantly higher compared to BAT-negative subjects (+15.5±8.9% versus +3.6±8.9%, P = 0.001), indicating a role for BAT in CIT in humans.

Conclusions

This study shows that in an extremely large range of body compositions, BAT activity is highly correlated with BMI and BF%. BAT-positive subjects showed higher CIT, indicating that BAT is also in humans involved in adaptive thermogenesis. Increasing BAT activity could be a therapeutic target in (morbid) obesity.  相似文献   

2.
Expression of the gene encoding metallothionein, a low molecular-weight cysteine-rich, stress-response and metal-binding protein was examined in human adipose tissue. The mRNA for MT-2A, a major metallothionein isoform in humans, was detected in subcutaneous fat using a specific antisense oligonucleotide probe. The level of MT-2A mRNA was significantly higher in a group of obese subjects than in a lean group, paralleling a similar increase in ob mRNA. A two-week period on a diet of 800 calories/day did not lead to any significant change in MT-2 mRNA levels. Separation of mature adipocytes from the cells of the stromal vascular fraction indicated that in human adipose tissue the metallothionein (MT-2A) gene is expressed both in adipocytes and in other cells of the tissue.  相似文献   

3.
4.
5.
6.
Metabolism of ruminant adipocytes involves the synthesis and mobilization of lipids. Rates of lipid synthesis from the uptake of preformed fatty acids (via lipoprotein lipase) and de novo synthesis of fatty acids are related to the energy balance. Acetate is the major carbon source for fatty acid synthesis with NADPH originating from the pentose cycle and the isocitrate cycle. Ruminant adipose tissue lacks the ability to utilize for lipogenesis those substrates that generate mitochondrial acetyl CoA because of an absence of ATP citrate-lyase and NADP-malate dehydrogenase. Lipid mobilization in ruminant adipocytes is apparently regulated via cAMP levels and a summary of the compounds investigated for lipolytic responses is presented. The control of lipid synthesis and mobilization is interrelated in ruminant adipose tissue. The coordinated manner in which these two functions are regulated is examined with regard to adipocyte responses to insulin and epinephrine. In both lipid synthesis and lipid mobilization, ruminant adipocytes are uniquely different from nonruminant adipose tissue. The physiological significance and possible basis for these species differences in adipose metabolism are discussed.  相似文献   

7.
8.
Steroid hormones seem to be important for adipose tissue metabolism and accumulation. As progesterone has been suggested to modulate the glucocorticoid effects, the interactions between glucocortioid and progesterone on adipose tissue metabolism were investigated.Forty-eight male Wistar rats were adrenectomized and divided into four groups; controls (treated with vehicle only), dexamethasone treated (10 micro g per rat), progesterone treated (5mg per rat) and the last group received both dexamethasone and progesterone.The dexamethasone-treated group had a significant loss of body weight and smaller intra-abdominal fat depots compared to the control group in addition, dexamethasone increased LPL-activity and increased catecholamine stimulated lipolysis. When progesterone was given concomitantly the dexamethasone effects on adipose tissue mass, LPL-activity and lipolysis were blocked. When given alone progesterone had no influence on body weight, amount of adipose tissue, lipolysis or LPL-activity.These data indicate that progesterone acts as an anti-glucocorticoid in adipose tissue in vivo, thus attenuating the glucocorticoid effect on adipose tissue metabolism.  相似文献   

9.
Adipose tissues are differently involved in lipid metabolism and obesity according to their type and location. Increasing reports stress on the impact of redox metabolism on obesity and metabolic syndrome. The aim of this work is to investigate the site-specific redox metabolism in three different adipose tissues and its changes occurring in obesity. We analysed enzymatic and non-enzymatic parameters, and focused on the reduced/oxidized glutathione and coenzyme Q couples. In lean compared with obese non-diabetic Zucker rats, interscapular brown fat seems well protected against oxidative stress and epididymal adipose tissue shows a more reduced glutathione redox state, associated with a higher susceptibility to lipophilic oxidative stress than inguinal adipose tissue. Epididymal adipose tissue redox metabolism significantly differs from inguinal one by its limited redox metabolism adaptation. Our results demonstrate site-specific managements of reactive oxygen species metabolism in obese Zucker rats. These results are not consistent with the classic deciphering of inflammatory situation and produce a new conception of the redox parameters implication in the development of the metabolic syndrome.  相似文献   

10.
11.
12.
13.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

14.
Human adipose tissue can produce plasminogen activator inhibitor-1 (PAI-1). It has been suggested that high levels of PAI-1 are of importance in enhanced cardiovascular disease observed among obese subjects, especially abdominally obese individuals. In the present study, we investigated the level of mRNA and production of PAI-1 in adipose tissue from two adipose tissue depots (omental vs. subcutaneous). Adipose tissue from both depots was obtained from obese (mean BMI, 46.9 kg/m 2) and non-obese (mean BMI, 23.9 kg/m 2) women. PAI-1 mRNA was measured both in fresh adipose tissue obtained immediately after surgery and after the adipose tissue (fragments) had been incubated for up to 72 h. In immediately frozen adipose tissue, PAI-1 mRNA expression was similar in omental and subcutaneous adipose tissue. No differences between obese and non-obese women were found. However, when adipose tissue fragments were cultured, PAI-1 mRNA and PAI-1 production were significantly higher in omental than in subcutaneous adipose tissue (p < 0.05). In the culture system, the production of PAI-1 in obese subjects was higher than in non-obese subjects in both subcutaneous (p < 0.05) and in omental adipose tissue (p = 0.19). In order to test whether these regional differences observed after incubation of the adipose tissue were due to differences in local accumulation of cytokines that may stimulate PAI-1 by a paracrine or autocrine manner, we investigated the expression of transforming growth factor beta1 (TGF-beta1) mRNA and tumor necrosis factor alpha (TNF-alpha) mRNA and protein. No differences between the two fat depots were found. In conclusion, no differences in PAI-1 expression between omental and subcutaneous adipose tissue were observed in biopsies frozen immediately after removal, but after incubation of adipose tissue (which somehow stimulates PAI-1 production), higher levels of PAI-1 were found in omental adipose tissue than in subcutaneous adipose tissue. Finally, PAI-1 production in adipose tissue from obese women was higher in non-obese women after incubation for 72 h.  相似文献   

15.
16.
We analyzed the effects of partial fat pad removal on retroperitoneal and epididymal fat depots and carcass metabolism of control (C) and MSG-obese (M) rats. Three-month-old C and M male Wistar rats were submitted to either partial surgical excision of epididymal and retroperitoneal fat tissue (lipectomy, L) or sham surgery (S) and studied after 7 or 30 days. Retroperitoneal and epididymal tissue re-growth after lipectomy was not observed, as indicated by the low pads weight of the L groups. The lipolysis rate was stimulated in LC7 and LM7, probably due to surgical stress and low insulin levels. In LM7, but not in LC7, in vivo lipogenesis rate increased in retroperitoneal and epididymal fat tissue, as did the diet-derived lipid accumulation in epididymal fat tissue. Although these local increases were no longer present in LM30, this group showed a large increase in the percentage of small area adipocytes in both pads as well as increased carcass lipogenesis rate. The present data showed that the partial removal of fat depots affected the metabolism of control and MSG-obese rats differently. In the obese animals only, it stimulated both local and carcass lipogenesis rate as well as adipocyte differentiation, i.e. responses likely to favor excised tissue re-growth and/or compensatory growth of non-excised depots.  相似文献   

17.
18.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号