首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary structure of the C-terminal region (94 residues) of the ADP,ATP carrier of beef heart mitochondria is described. CNBr cleavage results in a large peptide (CB1) with Mr 22 000 and several small peptides (CB2 to CB8). Peptide separation was achieved by gel chromatography with 80% formic acid or with an ethanol/formic acid mixture. The amino acid sequence of the small CNBr peptides was determined by solid-phase techniques. Hydrolysis in formic acid cleaves the carrier protein into an Mr 23 000 fragment (A1) with the blocked N-terminus and an Mr 10 000 fragment (A2) starting with proline. The alignment of two CNBr fragments was possible by degradation of A2 by solid-phase methods for 34 steps. The remaining CNBr fragments were arranged by sequencing the tryptic peptides of citraconylated A2.  相似文献   

2.
Thymidylate synthetase from Lactobacillus casei was S-carboxymethylated and degraded by treatment with cyanogen bromide. Although the protein contains 6 methionine residues, only 5 cyanogen bromide peptides were obtained due to the presence of 1 methionine on the NH2 terminus and another adjacent to a threonine residue which was resistant to cleavage. The peptides were isolated by differential extraction, first with ammonium acetate, then pyridine acetate, and finally the residue was solubilized with 50% acetic acid. Each peptide was further purified to homogeneity by Bio-Gel chromatography. The size of the peptides from the amino to carboxyl end of the enzyme subunit was CNBr 1, 4,100; CNBr 2, 10,300; CNBr 3, 8,100; CNBr 4, 11,800; CNBr 5, 2,200. The sum of the amino acid residues of the peptides is equal to the sum of the residues in an enzyme subunit, indicating that all of the CNBr peptides have been isolated. The CNBr-resistant methionine was located in CNBr 2 and the 5-fluoro-2'-deoxyuridine 5'-monophosphate binding site in CNBr 4. The holoenzyme molecular weight, based on the residue weights of the amino acids in the two equivalent subunits, is equal to 73,176. The complete sequence of each of the CNBr peptides, except for CNBr 4, which is presented in the following paper, is described.  相似文献   

3.
Peptides derived from plasmic and cyanogen bromide (CNBr) cleavage of highly cross-linked fibrin were isolated and characterized by sodium dodecyl sulfate-gel electrophoresis, amino acid analyses, cyanoethylation, and NH2-terminal analyses. Extended plasmic digestions of human fibrin containing four epsilon-(gamma-glutamyl)lysine cross-links per molecule produced a peptide of alpha-chain origin (Mr congruent to 21,000) which was comprised of a small donor peptide cross-linked to the acceptor site peptide from the middle of the alpha-chain. CNBr cleavage of highly cross-linked in vitro fibrin or of fibrin from a spontaneously formed in vivo arterial embolus produced about three cross-linked species of molecular weights 30,000 to 40,000, each of which contained the largest CNBr fragment (Mr = 29,000) from the alpha-chain. The predominant cross-link-containing CNBr fragments derived their donor group from the near COOH-terminal region of the alpha-chain as judged by difference amino acid compositions and NH2-terminal analyses. Additionally, cross-linked fragments of molecular weights 68,000 to 70,000 which appeared to contain two acceptor site peptides (Mr = 29,000) were detected in minor amounts in the CNBr digests of fibrin formed from whole plasma or from purified, plasminogen-free fibrinogen. No larger polymeric cross-linked CNBr fragment was generated from any of the highly cross-linked fibrin preparations examined. A model for the predominant mode of alpha-chain polymerization is proposed.  相似文献   

4.
A procedure is described for obtaining peptide maps from microgram quantities of protein in gel bands, after cleavage at the methionyl peptide bonds with vapors of acidic cyanogen bromide (CNBr). Absence of direct contact of the gel pieces with CNBr eliminates the need for extensive equilibration of the gel piece to remove CNBr prior to electrophoresis. The milder conditions lead to partial cleavage of the proteins, yielding larger peptides and thereby reducing the risk of peptide loss during the postelectrophoresis procedures. The "fingerprints" obtained are reproducible and independent of an eightfold change in CNBr concentration.  相似文献   

5.
Hydrophobic membrane proteins often have complex functions and are thus of great interest. However, their analysis presents a challenge because they are not readily soluble in polar solvents and often undergo aggregation. We present a sequential CNBr and trypsin in-gel digestion method combined with mass spectrometry for membrane protein analysis. CNBr selectively cleaves methionine residues. But due to the low number of methionines in proteins, CNBr cleavage produces a small number of large peptide fragments with MWs typically >2000, which are difficult to extract from gel pieces. To produce a larger number of smaller peptides than that obtained by using CNBr alone, we demonstrate that trypsin can be used to further digest the sample in gel. The use of n-octyl glucoside (n-OG) to enhance the digestion efficiency and peptide recovery was also studied. We demonstrate that the sensitivity of this membrane protein identification method is in the tens of picomole regime, which is compatible to the Coomassie staining gel-spot visualization method, and is more sensitive than other techniques reported in the literature. This CNBr/trypsin in-gel digestion method is also found to be very reproducible and has been successfully applied for the analysis of complex protein mixtures extracted from biological samples. The results are presented from a study of the analysis of bacteriorhodopsin, nitrate reductase 1 gamma chain, and a complex protein mixture extracted from the endoplasmic recticulum membrane of mouse liver.  相似文献   

6.
The cyanogen bromide (CNBr)/formic acid cleavage reactions of wild-type and trifluoromethionine (TFM)-containing recombinant lambda lysozyme were studied utilizing ESI and MALDI mass spectrometry. Detailed analysis of the mass spectra of reverse-phase HPLC-purified cleavage fragments produced from treatment of the wild-type and labeled proteins with CNBr indicated cleavage solely of methionyl peptide bonds with no observation of cleavage at TFM. N-Acetyl-TFM was also found to be resistant to reaction with CNBr, in contrast to N-acetyl-methionine. The analysis also indicated differential reactivity among the three methionine positions in the wild-type enzyme. Additionally, formylation of intact enzyme as well as peptide fragments were observed and characterized and indicated that serine, threonine, as well as C-terminal homoserine side chains are partially formylated under standard cleavage protocols.  相似文献   

7.
Cleavage of colicin E1 molecules with a variety of proteases or with cyanogen bromide (CNBr) generates COOH-terminal fragments which have channel-forming activity similar to that of intact colicin in planar lipid bilayer membranes. The smallest channel-forming fragment obtained by CNBr cleavage of the wild-type molecule consists of the C-terminal 152 amino acids. By the use of oligonucleotide-directed mutagenesis, we have made nine mutants along this 152 amino acid peptide, in which an amino acid was replaced by methionine in order to create a new CNBr cleavage site. The smallest of the CNBr-cleaved C-terminal fragments with channel-forming activity, in planar bilayer membranes, was generated by cleavage at new Met position 428 and has 94 amino acids, whereas a 75 amino acid peptide produced by cleavage of a new Met at position 447 did not have channel activity. The NH2-terminus of the channel-forming domain of colicin E1 appears therefore to lie between residues 428 and 447. Since, however, the last six C-terminal residues of the colicin can be removed without changing activity, the number of amino acids necessary to form the channel is 88 or less. In addition, the unique Cys residue in colicin E1 was replaced by Gly, and nine mutants were then made with Cys placed at sequential locations along the peptide for eventual use as sulfhydryl attachment sites to determine the local environment of the replaced amino acid. In the course of making 21 mutants, eight charged residues have been replaced by uncharged Met or Cys without changing the biological activity of the intact molecule. It has been proposed previously that the conformation of the colicin E1 channel is a barrel formed from five or six alpha-helices, each having 20 amino acids spanning the membrane and two to four residues making the turn at the boundary of the membrane. Our finding that 88 amino acids can make an active channel, combined with recently reported stoichiometric evidence that the channel is a monomer excludes this model and adds significant constraints which can be used in building a molecular model of the channel.  相似文献   

8.
We have sought to obtain conditions for cyanogen bromide (CNBr) cleavage of apolipoprotein AI which would preserve, as far as possible, the biological activity of the resulting fragments. We found that the choice of solvent is an important consideration since modification of amino acids in different proteins varies with cleavage conditions. Initially, an analytical technique employing reversed-phase (RP)-HPLC which separates the four CNBr fragments in a single chromatographic step was established to monitor the products and extent of cleavage. In developing this technique, spectral data indicated damage to tyrosine and tryptophan residues during CNBr digestion. This problem was resolved by using 70% trifluoroacetic acid instead of 70% formic acid as the solvent, which had the added benefit of increasing the extent of cleavage of the Met86-Ser87 bond by 50%. We applied the information derived from the analytical RP-HPLC method to achieve the preparative isolation of CNBr fragments. This procedure included a gel permeation chromatography step using a citrate/urea buffer before RP-HPLC to isolate pure fragments in volatile buffers. Finally, we discuss aspects of structural integrity with an emphasis on modification of aromatic amino acids and deamidation of asparagine and glutamine residues.  相似文献   

9.
A method for specific labeling of cysteine-containing peptides has been developed using Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Prior to cleavage with proteases or chemical reagents, proteins are reacted with DTNB, resulting in the formation of a mixed disulfide between the protein sulfhydryl group and 2-nitro-5-thiobenzoic acid (TNB). The formation of the mixed disulfide introduces a chromophore, with an absorbance peak at 328 nm. By monitoring peptide maps generated by HPLC at 210 and 328 nm, peptides containing cysteine residues are readily identified. The stability of the derivative was tested using glutathione-TNB as a model compound. Glutathione-TNB is stable to conditions used for CNBr cleavage, as well as those for tryptic cleavage. The TNB label may also increase the hydrophobicity of small peptides, which otherwise might not bind to reverse-phase matrices. This was the case for an oxidatively modified tetrapeptide isolated from Escherichia coli glutamine synthetase.  相似文献   

10.
Bovine P2 Protein: Sequence at the NH2-Terminal of the Protein   总被引:2,自引:2,他引:0  
Sequence data from key fragments of the P2 protein established the order of cyanogen bromide (CNBr) peptides in the structure of the protein and the primary structure for approximately one-half of the molecule. Data were obtained from the three tryptic peptides of blocked NH2-terminal CNBr peptide (CN3), the large CNBr peptide of P2 protein (CN1), and a fragment obtained from P2 by cleavage at tryptophan with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine. This last fragment was found to contain an over-lapping sequence that proved the juxtaposition of CN1 and CN3 in P2 protein. Thus, based on this fact and the characteristics of the CNBr peptides, the P2 structure is composed of CNBr peptides in the order: CN3-CN1-CN2(Val)-CN2(Lys). A comparison was made between the partial sequence of P2 protein and the equivalent portion of the structure of bovine myelin basic protein. The structures of these two proteins were found to be distinctly different although certain similarities are found.  相似文献   

11.
A vector system has been designed for obtaining high yields of polypeptides synthesized in Escherichia coli. Multiple copies of a synthetic gene encoding the neuropeptide substance P (SP) (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) have been linked and fused to the lacZ gene. Each copy of the SP gene was flanked by codons for methionine to create sites for cleavage by cyanogen bromide (CNBr). The isolated multimeric SP fusion protein was converted to monomers of SP analog, each containing a carboxyl-terminal homoserine lactone (Hse-lactone) residue (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Hse-lactone), upon treatment with CNBr in formic acid. The Hse-lactone moiety was subjected to chemical modifications to produce an SP Hse amide. This method permits synthesis of peptide amide analogs and other peptide derivatives by combining recombinant DNA techniques and chemical methods.  相似文献   

12.
We have produced a naturally occurring variant of human insulin-like growth factor I, truncated by three amino acids at the amino terminus. The polypeptide is obtained as a fusion protein in Escherichia coli. The fusion partner is a synthetic IgG-binding peptide. During fermentation the fusion protein is secreted into the medium, and is purified on IgG--Sepharose prior to cleavage. Two different genes for the fusion protein were used, allowing chemical cleavage at either a tryptophan linker or a methionine linker between the fusion partner and the growth factor, using N-chlorosuccinimide (NCS) or cyanogen bromide (CNBr) respectively. A partial CNBr cleavage yielded the native peptide, whereas the NCS cleavage yielded a product in which the single methionine had been oxidized to the sulfoxide. The forms from both cleavage methods exhibited biological activity and were characterized after purification to homogeneity. Both cleavage methods gave products having correct N- and C-terminal ends. The purified product had a biological activity equal to that of corresponding material from natural sources, 15 000 U/mg. Modified forms of truncated IGF-I were also identified, purified and characterized. Modifications such as proteolysis and misincorporation of norleucine for methionine occurred during biosynthesis, while oxidation of methionine took place during both fermentation and chemical cleavage.  相似文献   

13.
Apolipoprotein B-100 (apo B-100) is the protein ligand in low-density lipoproteins that binds to a specific cell-surface receptor. Its molecular mass has been a subject of controversy. We have determined the molecular mass of the protein by a chemical approach. After complete CNBr cleavage, the C-terminal fragment of apo B-100 was purified by reverse-phase h.p.l.c. Amino acid N- and C-terminal analyses confirm that this peptide represents the C-terminal peptide as deduced from the DNA sequence of a human apo B-100 cDNA clone. A chemically synthesized peptide was used to determine the recovery of the peptide (74.72%). On the basis of these data, the molecular mass of apo B-100 was determined to be 496.82 +/- 24.84 kDa.  相似文献   

14.
After cleavage of the membrane (M) protein of influenza A/WSN virus by using cyanogen bromide (CNBr), six peptide peaks representing approximate molecular weights of 6,000, 4,000, 2,200, 1,600, 1,200, and 1,000 were resolved by gel filtration on BioGel P6. Analysis by thin-layer chromatography indicates that the first, second, fourth, and fifth peaks contain single-peptide components, whereas the third and sixth peaks contain more than one peptide. By using Whatman CM52 ion-exchange chromatography in 5 M urea, four peptides were resolved from the third BioGel P6 peak. The amino acid composition of each of the purified peptides has been determined, and partial sequences were obtained for several peptides. Based on finding a blocked amino terminal residue, the 6,000-dalton fragment appears to contain the amino terminus of the M protein, whereas the carboxy terminal peptide was identified as a 2,000-dalton peptide.  相似文献   

15.
We have characterized the time-resolved labeling of a site on the Torpedo californica electrocyte acetylcholine receptor (ACHR) by the photoreactive noncompetitive inhibitor derivative quinacrine azide (QA). The dependence of [3H]QA labeling on acetylcholine (ACH) concentration and on time is consistent with the preferential labeling by [3H]QA of ACHR in the open state. The ACH-dependent [3H]QA labeling, which was associated predominantly with the alpha-subunit, was blocked by other noncompetitive inhibitors including quinacrine, chlorpromazine, proadifen, histrionicotoxin, and bupivacaine. alpha-Subunit from ACHR labeled with [3H]QA 20 ms after the addition of ACH was cleaved with CNBr, and the fragments were separated by high pressure liquid chromatography. A peptide containing a major site of specific labeling was purified on two different reverse-phase columns. By N-terminal sequencing, amino acid composition, binding to mercurial-agarose, and apparent molecular weight, this [3H]QA-labeled peptide was identified as alpha-208-243, a CNBr fragment containing the putative membrane-spanning helix M1.  相似文献   

16.
The formation of covalent binary complexes of thymidylate synthase and its nucleotide substrate dUMP, product dTMP, and inhibitor, 5-fluorodeoxyuridylate (FdUMP) was investigated using the trichloroacetic acid precipitation method. It was observed that, in addition to FdUMP, both dUMP and dTMP were capable of covalent interactions with the enzyme in the absence of added folates. The presence of folate, dihydrofolate, or tetrahydrofolate (H4folate) was found to produce substantial enhancements in the covalent binding of both FdUMP and dUMP to the enzyme with H4folate being the most effective agent. Further, covalent binary complexes of the enzyme with the three radiolabeled nucleotides were isolated by trichloroacetic acid precipitation and subjected to CNBr cleavage. The active-site CNBr peptide was isolated by reverse phase high performance liquid chromatography, and the first five N-terminal amino acid residues were sequenced by the dansyl-Edman procedure. Each active site peptide obtained from the covalent binary complexes as well as that from the covalent inhibitory ternary complex formed from enzyme, FdUMP, and 5,10-methylene-H4folate exhibited an identical sequence of Ala-Leu-Pro-Pro-(X)-, and the 5th amino acid was found to be associated with radiolabeled nucleotide ligand. Dansyl-Edman sequence analysis of the active site CNBr peptide, derived from enzyme which had been treated with iodoacetic acid, gave a sequence of Ala-Leu-Pro-Pro-CmCys (where CmCys is carboxymethylcysteine), thus confirming the fact that the fifth residue from the N terminus is Cys-198. In all the cases, the active site Cys-198 residue was found to be covalently linked to the nucleotides. These results provide unequivocal proof that the covalent binary complexes of enzyme with dUMP and dTMP predicted in the catalytic reaction mechanism actually exist.  相似文献   

17.
A biologically active semisynthetic hybrid of horse heart cytochrome c has been prepared by combining the heme peptide 1 through 65 (HP 1-65), prepared by CNBr cleavage of natural cytochrome c, with a semisynthetic peptide corresponding to positions 66 through 104. A fully protected synthetic peptide 66--79 was prepared by a modified solid phase peptide synthesis procedure and was converted to its N-hydroxysuccinimide ester. A peptide corresponding to residues 81--104 of cytochrome c was also isolated from the CNBr cleavage mixture and its epsilon-amino groups and tyrosyl hydroxyl group were protected selectively with the t-butyloxycarbonyl group. This partially protected peptide was reacted with t-butyloxycarbonyl methionine N-hydroxysuccinimide ester to give a derivative having methionine at position 80. This product was deprotected, purified and then t-butyloxycarbonyl groups were again introduced specifically on the epsilon-amino groups to give the peptide, Boc(Lys,Tyr)80--104. A semisynthetic peptide corresponding to residues 66 through 104 of cytochrome c was prepared by condensing the synthetic peptide 66--79 N-hydroxysuccinimide ester with t-butyloxycarbonyl (Lys,Tyr)80--104. The semisynthetic product was deprotected, purified and combined under anaerobic conditions with a heme peptide, HP 1-65, that was isolated from the products of CNBr cleavage of native cytochrome c. The reconstituted semisynthetic cytochrome c was purified by ion exchange chromatography and was shown to have the same oxygen uptake as native cytochrome c when assayed in the succinate oxidase system.  相似文献   

18.
Acanthamoeba profilin was cross-linked to actin via a zero-length isopeptide bond using carbodiimide. The covalently linked 1:1 complex was purified and treated with cyanogen bromide. This cleaves actin into small cyanogen bromide (CNBr) peptides and leaves the profilin intact owing to its lack of methionine. Profilin with one covalently attached actin CNBr peptide was purified by gel filtration followed by gel electrophoresis and electroblotting on polybase-coated glass-fiber membranes. Since the NH2 terminus of profilin is blocked, Edman degradation gave only the sequence of the conjugated actin CNBr fragment beginning with Trp-356. The profilin-actin CNBr peptide conjugate was digested further with trypsin and the cross-linked peptide identified by comparison with the tryptic peptide pattern obtained from carbodiimide-treated profilin. Amino-acid sequence analysis of the cross-linked tryptic peptides produced two residues at each cycle. Their order corresponds to actin starting at Trp-356 and profilin starting at Ala-94. From the absence of the phenylthiohydantoin-amino acid residues in specific cycles, we conclude that actin Glu-364 is linked to Lys-115 in profilin. Experiments with the isoforms of profilin I and profilin II gave identical results. The cross-linked region in profilin is homologous with sequences in the larger actin filament capping proteins fragmin and gelsolin.  相似文献   

19.
Previous studies [(1987) Biochem. J. 241, 711-720] have shown that position 150 of human C1r is occupied by a modified amino acid that, after acid hydrolysis, yields erythro-beta-hydroxyaspartic acid. In view of further investigations on the nature of this residue, peptide CN1a T8/T9 TL8 (positions 147-155) was isolated from C1r A chain by CNBr cleavage followed by enzymatic cleavages by trypsin and thermolysin. Amino acid analysis, sequential Edman degradation and FAB-MS of this peptide indicate that the residue at position 150 is an erythro-beta-hydroxyasparagine resulting from post-translational hydroxylation of asparagine.  相似文献   

20.
Primary structure of glycolate oxidase from spinach   总被引:1,自引:0,他引:1  
The primary structure of glycolate oxidase from spinach has been determined. Six different types of peptide digest were investigated, utilizing CNBr, proteolytic enzymes, and chemical modifications to change a specificity of cleavage. In total, 90 peptides were purified and analyzed. The studies were aimed at correlation with crystallographic analysis of the same protein carried through in parallel and with cDNA studies which utilized initially determined amino acid sequences for synthesis of oligonucleotide probes. Continuous comparisons with the results from the crystallographic studies helped at an early stage to secure peptide overlaps, at the same time as the peptide data secured residue assignments in the electron density maps. In the end, all data agree and regions from all parts of the molecule have been checked by independent methods of analysis. The primary structure establishes the type of N-terminal post-translational processing, and yields information on segments not fully defined in electron density maps. Combined, the chemical, crystallographic, and cDNA data give extensive reliability. The peptide analysis shows that the N-terminus is blocked by acylation of the initiator methionine, which is in a primary structure typical for non-removal of the methionine in the processing events of the nascent protein chain. The molecule is comparatively rich in menthionine and some other generally less common residues, but has only one cysteine residue and no extensive hydrophobic segment. An amino acid sequence homology with flavocytochrome b2 from yeast, as expected from known similarities in tertiary structure, is observed (33% residue identities).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号