首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MT3 antigen is defined serologically as a DR supertypic specificity and is strongly associated with DR4, DR7, and DRw9. To determine whether the MT3 molecule is distinct from the DR molecule, DR4 and MT3 antigens were immunoprecipitated from 125I-labeled plasma membrane glycoproteins of a DR4-homozygous, MT3-homozygous B lymphoid cell line, Wa, and compared by two-dimensional (2-D) gel electrophoresis. The precipitates with two different anti-DR4 alloantisera and with three different mouse antibodies against human Ia monomorphic determinants gave the same 2-D gel pattern consisting of one heavy chain with a molecular weight of 34 000 and a set of light chains with a molecular weight of 30 000, indicating that these polypeptides are the components of the DR4 molecule. On the other hand, all three anti-MT3 alloantisera used precipitated an identical set of anti-MT3 alloantisera specific light chains with a molecular weight of 30 000, and one heavy chain with a molecular weight of 34 000. The pI of the MT3 light chain was more acidic than that of the DR4 light chain. The amount of MT3 light chains was much smaller than that of DR4 light chains in unlabeled plasma membrane glycoproteins. Thus, we have demonstrated directly using 2-D gel electrophoresis and anti-MT3 alloantisera that the MT3 antigen is a new human Ia molecule distinct from DR4.  相似文献   

2.
1. The microheterogeneous alpha molecules of class II antigen, DR molecules obtained from human B cell line and I-A molecules from mouse B cell hybridoma cell line, were separated by 2-D PAGE, transferred onto NC sheets and N-linked oligosaccharide types were analyzed by staining with P.O./lectins. 2. This is the first report to show directly the type of oligosaccharide chain corresponding to each spot separated by 2-D PAGE. The glycosylation patterns of class II alpha chains in human and mouse were compared.  相似文献   

3.
The leukocyte adhesion molecule L-selectin, which mediates the initial steps of leukocyte attachment to vascular endothelium, is intensely glycosylated. Different glycoforms of L-selectin are expressed on different leukocyte subsets and differences in L-selectin glycosylation appear to be correlated with the leukocyte's ability to attach to different endothelial targets. In the present study we addressed the question whether glycosylation of L-selectin influences L-selectin-ligand interactions. To obtain different glycoforms of L-selectin, recombinant proteins were expressed both in the baby hamster kidney (BHK) cell line and in the human myelogenous cell line K562, resulting in sL-sel[BHK] or sL-sel[K562], respectively. The glycosylation characteristics of the purified proteins were determined. The most striking differences in glycosylation were seen in the terminal sialylation. Each of the two proteins carried sialic acids in the alpha 2-3 position, while alpha 2-6-bound sialic acids were found exclusively on sL-sel[K562]. To investigate their adhesive properties, both recombinant sL-selectins were used in cell adhesion assays and interactions with the ligands present on various hematopoietic cell lines or activated human cardiac microvascular endothelial cells were examined. The binding capacity of sL-sel[K562] was about 1.6 fold higher compared to sL-sel[BHK] under static as well as under flow conditions. These findings indicate that the terminal sialylation pattern of L-selectin modulates its binding characteristics.  相似文献   

4.
The fine specificity of anti-HLA-DR1 alloreactive, human T cells was investigated by using DR1-expressing human and murine stimulator cells. All three bulk cell lines and six out of seven T cell clones proliferated in response to DR1-expressing mouse L cells. In addition to these species non specific T cells, three clones were identified which proliferated only in response to DR1 expressed by human or by murine stimulator cells. The patterns of response of these clones may reflect specificity for species or lineage-specific peptides with DR1. The results of aldehyde fixation and cytotoxicity experiments suggested that some of the T cell clones which proliferated in response to human and murine DR1 stimulators also required to recognize species-specific antigens. The responses of four of the six clones were abolished by fixation of DR1-L cells but not of a DR-1 EBV transformed lymphoblastoid cell line before co-culture. In addition, these clones were also cytotoxic for DR1-expressing human targets. The same clones which failed to recognize fixed L cells also failed to lyse DR1-L cells in a short term chromium release assay. Taken together these results suggest that some alloreactive anti-DR1, T cells are specific for peptides of cellular proteins seen in the context of the allo-MHC molecule. It is envisaged that L cells when co-cultured with human T cells, process and present peptides derived from proteins that are shed or secreted by the human cells, for co-recognition with DR1 on the L cell surface. The presentation of multiple peptides derived from endogenous proteins by allogeneic cells may contribute to the high precursor frequency of allo-reactive T cells.  相似文献   

5.
Murine L cells expressing the products of transfected HLA-DR1 genes functioned as APC for two influenza-specific, human Th cell clones with comparable efficiency to a DR1-expressing human lymphoblastoid cell line. In order to investigate the restriction specificity of the two Th clones, a transfectant expressing the species-mismatched MHC class II dimer DR1:I-E was tested as an APC. Both T cells showed no loss of Ag sensitivity due to substitution of the murine chain. One of the Th clones, TLC 72, showed even greater degeneracy by responding to Ag in the context of I-Ek. Taking into account the lower level of MHC class II expression on the I-Ek transfectant, there is remarkably little loss of efficiency of Ag-induced T cell activation due to the substitution of I-E for DR as restriction element. The Ag-specific responses of both clones were inhibited by anti-CD4 antibody when DR-transfected L cells or human lymphoblastoid cells were used as APC. This inhibition was also seen when Ag was presented to TLC72 by the I-Ek-expressing transfectant. Whether this inhibition is the result of negative signaling or of blocking an interaction between human CD4 and I-Ek is discussed. Similarly the inhibitory effects of mAb against the T cell accessory molecule LFA/1 were the same for both clones when either the transfectants or the lymphoblastoid cell line were used as APC, suggesting that L cells may express a molecule that is capable of acting as a ligand for human LFA/1. The results presented here further illustrate the value of transfectants in analyzing T cell recognition and accessory cell requirements. The patterns of degeneracy of MHC restriction exhibited by these clones provides a platform for a more detailed analysis of key residues involved in MHC class II-restricted T cell Ag recognition.  相似文献   

6.
The clone TA10 is a T3+ T4+ T8- proliferative and cytolytic human T cell clone. This clone has been shown to be specific for the hemagglutinin of influenza A Texas virus and restricted by an HLA class II molecule associated with the DRw8-Dw8.1 phenotype. Here we show that TA10 and all of its subclones can also react with eight HLA-DRw8 negative, Epstein-Barr virus (EBV)-transformed cell lines or phytohemagglutinin blasts in the absence of influenza antigens. All of these cell lines are HLA-DR2/DR4 with a classic DR2 long haplotype. The only nonreactive HLA-DR2/DR4 cell line observed bears a DR2 short haplotype. Only heterozygous HLA-DR2/DR4 but not parental DR2 or DR4 EBV-transformed cell lines can be recognized by TA10, indicating that the cross-reacting determinant is a transcomplementation product between HLA-DR2 and HLA-DR4 haplotypes. DR-specific, but not DQ- or DP-specific monoclonal antibodies, inhibit in the proliferation assay and in the chromium release test both the DRw8-Dw8.1-restricted and the anti-DR2/DR4 reactions. These results show that HLA-DR-restricted, anti-viral human T cell clone can evidence cross-reactivity for allospecific class II molecules of the major histocompatibility complex, and human CTL can recognize transcomplementation products of class II HLA genes. In addition, the results suggest that a beta-chain coded for by an HLA-DR gene and associated with an alpha-chain coded for by a still unidentified but possibly HLA-DQ gene constitute this functional transcomplementation product.  相似文献   

7.
The contributions to allorecognition of polymorphic amino acids in the HLA-DR7 beta 1 chain were analyzed by using mutant DR7 beta 1 chains with single amino acid substitutions at position 4, 11, 13, 25, 30, 37, 57, 60, 67, 70, 71, 74, or 78. Transfectants expressing mutant DR7 molecules were used as stimulators for six DR7-alloreactive T cell clones. The majority of the substitutions had profound effects on the ability of the DR7 molecule to stimulate one or more T cell clones. Nine of the 13 substitutions completely abrogated recognition by at least one clone. The finding that each of the substitutions in the beta-strands in the floor of the peptide binding groove affected T cell allorecognition supports the model of allorecognition in which the complex of a self-peptide bound to a class II molecule is recognized by the TCR. Interestingly, the substitution at position 4, which is predicted to be located outside the peptide binding groove, decreased the ability of the DR7 molecule to stimulate some clones. Each of the DR7-alloreactive T cell clones had a unique reactivity pattern in response to the different mutant molecules, indicating that the TCR of each clone recognized the DR7 molecule differently. Surprisingly, many of the mutant DR7 molecules induced proliferation by one or more clones that was greater than 125% of the proliferation induced by the wild-type DR7 molecule. These data indicate that multiple polymorphic residues, predicted in the class II model to be located in both the beta-strands and alpha-helix of the DR7 beta 1 chain, contribute to allorecognition of the DR7 molecule.  相似文献   

8.
A stable transformed cell line constitutively expressing human factor IX has been established. Wild-type Chinese hamster ovary cells (CHO cells) were transformed using a polycistronic expression vector carrying a previously isolated factor IX cDNA and a selection gene encoding the Escherichia coli xanthine-guanine phosphoribosyl transferase. One clone, CHO 622.4, contains a high number of genomically integrated plasmids and secretes 1-3 mg factor IX l-1 day-1 into the culture medium with a biological activity ranging from 25% to 40%. The recombinant molecule was purified either by conventional chromatography or by immunoaffinity chromatography using antibodies specific to a calcium-induced factor IX conformer. The purified recombinant protein migrates as a single band with the same mobility as that of natural factor IX on SDS/polyacrylamide gels. N-terminal sequencing shows tow differently processed forms of recombinant factor IX: whereas the majority of the zymogen is correctly processed, approximately 20% of the purified recombinant molecule contains an 18-amino-acid NH2-extension corresponding to the precursor form of factor IX. Analysis of the 4-carboxyglutamic acid content indicates a high but incomplete carboxylation (70%) of the recombinant molecule as compared to natural factor IX. The carbohydrate composition of both the natural and recombinant molecules has been determined. Both molecules have a N-glycan structure of similar complexity, indicating that factor IX contains all the information to direct the same glycosylation pattern in human liver cells and in an unrelated cell line such as CHO-K1.  相似文献   

9.
The HLA-DR2 restriction of the T cell response to myelin basic protein (MBP) was studied using murine L cells transfected with DRalpha and either DR2a or DR2b beta-chain cDNA. DR2a and DR2b represent the two isotypic DRbeta chains expressed in DR2Dw2 haplotypes. Eleven MBP-specific cytolytic T cell lines derived from patients with multiple sclerosis were isolated. Two of these cell lines recognized MBP-pulsed DR2-expressing L cell transfectants and four of them could only recognize the L cells if the adhesion molecule ICAM-1 was expressed in addition to HLA-DR2. Five of the six lines were restricted by HLA-DR2a; one line recognized Ag in conjunction with DR2b, but only if ICAM-1 was coexpressed. The remaining five lines did not lyse MBP-pulsed L cells. The ability of the DR2b molecules on transfected cells to stimulate T cells was confirmed with DR2b-allospecific T cell clones. Although five MBP-specific lines were restricted by DR2a, they recognized different parts of the MBP molecule, as demonstrated by the presentation of shorter peptides. Thus, our results suggest that DR2a is a dominant restriction molecule in MBP-specific responses by DR2+ MS patients. The results also indicate that the reported heterogeneity in MBP epitopes recognized by DR2-restricted T cells, may not be due to the use of different restriction elements but rather to the binding of different MBP peptides to DR2a molecules.  相似文献   

10.
We have investigated the independent effects of selective gene amplification (using the dhfr amplifiable selection marker) and culture operating strategy (batch vs repeated fed-batch vs semicontinuous perfusion) on the glycosylation of a recombinant reporter protein (secreted alkaline phosphatase, SEAP) produced in transfected Chinese hamster ovary (CHO) cells. HPLC analyses coupled with susceptibility to various exoglycosidases were used to determine the N-glycosylation profile of SEAP samples. The dhfr amplified cell line yielded an almost 10-fold increase in specific productivity as compared to that of the unamplified cell line. The glycosylation pattern of the reporter protein produced in batch bioreactor cultures of the amplified cell line showed only slight differences as compared to the glycosylation pattern of the protein from batch bioreactor cultures of the unamplified cell line. In contrast, analysis of SEAP glycosylation structures from the protein isolated from semicontinuous perfusion cultures indicated that both relative glycan content and extent of sialylation were increased as compared to samples isolated from repeated fed-batch cultures. These results suggest that the slow growing perfusion cultures produce more completely glycosylated proteins than the faster growing repeated fed-batch cultures.  相似文献   

11.
It is hypothesized that autoimmune diseases manifest when tolerance to self-Ags fails. One possible mechanism to break tolerance is presentation of self-Ag in an altered form. Most Ags are presented by APCs via the traditional presentation pathway that includes "epitope editing" by intracellular HLA-DM, a molecule that selects for stable MHC-peptide complexes. We were interested in testing the hypothesis that autoreactive MHC-peptide complexes may reach the cell surface by an alternate pathway without being edited by HLA-DM. We selected a cartilage autoantigen human cartilage glycoprotein 39 to which T cell responses are observed in rheumatoid arthritis (RA) patients and some DR(*)04 healthy subjects. RA is genetically associated with certain DRB1 alleles, including DRB1(*)0401 but closely related allele DRB1(*)0402 is either neutral or mildly protective with respect to RA. We generated human B lymphoblastoid cell line cells expressing DR(*)0401 or DR(*)0402 in the presence or absence of intracellular HLA-DM and assessed their ability to present a candidate autoantigen, human cartilage glycoprotein 39. Our results show that the presence of intracellular HLA-DM is critical for presentation of this autoantigen to CD4(+) T cell hybridomas generated from DR(*)04-transgenic mice. Presentation of an autoantigen by the traditional HLA-DM-dependent pathway has implications for Ag presentation events in RA.  相似文献   

12.
The glycosylation and processing of the asparagine-linked oligosaccharides at individual glycosylation sites on the mu-chain of murine immunoglobulin M were investigated using variant cell lines that synthesize and secrete IgM heavy chains with known peptide deletions. Normal murine IgM has five N-linked oligosaccharides in the constant region of each heavy or mu-chain. Each mu-chain has four complex-type oligosaccharides as well as a single high mannose-type oligosaccharide near the carboxyl terminus of the molecule. The peptide deletion of the C mu 1 constant region domain in the heavy chains synthesized by one variant cell line did not prevent subsequent glycosylation at more distal glycosylation sites. In fact, the presence of this deletion resulted in more complete glycosylation at the C-terminal glycosylation site. Evaluation of glycopeptides containing individual glycosylation sites by Concanavalin A-Sepharose indicated that this deletion had no significant effect on the processing of structures from high mannose-type to complex-type oligosaccharide chains. In contrast, a deletion of the C-terminal peptide region of the heavy chain of IgM synthesized by a second variant cell line resulted in intracellular processing to more highly branched oligosaccharide structures at several of the glycosylation sites not involved in the deletion.  相似文献   

13.
Although the polymorphic human Ia epitope recognized by monoclonal antibody 109d6 typically is expressed by DRw53 beta 2 chains, the epitope was shown to be encoded by distinctive DR beta 1 chains of a DRw10 haplotype in three unrelated DR4-negative individuals with rheumatoid arthritis. No evidence of a DR beta 2 (DR beta 4) chain molecule was found to be encoded by this haplotype. Using two-dimensional gel analysis and partial radioactive N-terminal microsequencing, the DR and DQ products were characterized in the heterozygous members of a family in which the segregation of both varieties of DR beta chains specifying the 109d6 epitope was demonstrated. The expression of the epitope on the DR beta 2 chain, but not on the DR beta 1 chain, was abolished by preventing N-linked glycosylation, although in both molecules the epitope was not altered by neuraminidase digestion. The potential structural bases of the serologic cross reactions of DRw10 are discussed, as are the possible implications of the findings for the definition of susceptibility to rheumatoid arthritis.  相似文献   

14.
T cell recognition of allopeptides in context of syngeneic MHC.   总被引:10,自引:0,他引:10  
We have analyzed the ability of T cells to recognize peptides corresponding in sequence to an allogeneic HLA-DR molecule, in context of syngeneic MHC. PBMC from a responder with the HLA-DR beta 1*1101/DR beta 1*1201 genotype were stimulated in vitro with a mixture of four synthetic peptides derived from the first domain of the DR beta 1*0101 chain (amino acid residue 1-20, 21-42, 43-62, and 66-90). An alloreactive T cell line, TCL-LS, which proliferates only in response to peptide 21-42 presented by HLA-DR beta 1*1101, was obtained. The blastogenic response of the line was inhibited by anti-HLA-DR and CD4 antibodies but was not affected by antibodies to HLA-DQ, HLA-DP, HLA-ABC, and CD8. In the presence of irradiated, autologous APC, TCL-LS displayed specific proliferative responses to stimulating cells obtained from individuals carrying the DR beta 1*0101 allele. In the absence of autologous APC, TCL-LS recognized HLA-DR1 on allogeneic cells only when expressed together with HLA-DR beta 1*1101, the restrictive element. This indicates that TCL-LS recognizes processed HLA-DR1 molecule presented as nominal Ag. Study of TCR-V beta gene repertoire expressed by TCL-LS showed that only two V beta genes were used (V beta 13.2 and V beta 12). Two T cell clones (TCC) derived from this line, TCC-A5 and B4, exhibited a similar pattern of reactivity and expressed V beta 13.2. These results indicate that T cells recognizing peptides, which are derived from the breakdown of allogeneic MHC class II proteins and are presented by self-HLA-DR molecules, participate in allorecognition.  相似文献   

15.
Three cytotoxic monoclonal antibodies, HU-11, HU-32, and HU-33, specific for human Ia-like antigens were used to analyze the two HLA-DR2-associated HLA-D specificities, HLA-Dw2 and HLA-Dw12. In the HLA-Dw2, DR2, MB1 homozygous B-cell line EB-CMG, the binding of radiolabeled HU-32 and HU-33 was strongly inhibited by the addition of nonlabeled HU-11, whereas no inhibition occurred in the HLA-Dw12, DR2, MB1 homozygous B-cell line EB-KT. To confirm this differential inhibition pattern further, F(ab')2 fragments were prepared from HU-11, and their ability to inhibit complement-dependent lysis mediated by HU-32 and HU-33 was assessed against a total of five homozygous typing cell lines homozygous for HLA-Dw2, DR2, MB1 or HLA-Dw12, DR2, MB1, including EB-CMG and EB-KT. Here again, the same differential inhibition pattern as that observed in the radiobinding inhibition assays was obtained. Thus, the data suggest that the two kinds of HLA-DR2-positive homozygous typing cell lines with distinct HLA-D specificity can be distinguished from each other by using solely serologic methods. This is the first clear-cut serologic distinction made between homozygous typing cells defining HLA-Dw2 and those defining HLA-Dw12, since no serologic means that enables one to distinguish one from the other has been available.  相似文献   

16.
A cytotoxic monoclonal antibody, PL3, was produced by immunizing mice with a cell line homozygous for the HLA class II antigenic specificity DR7. The serologic specificity of PL3 was completely concordant with the MT3 supertypic specificity, which is tightly associated with HLA-DR4, -DR7, and -DRw9. This was confirmed by the finding that F(ab')2 fragments of PL3 blocked the cytotoxicity of anti-MT3 alloantisera. Although PL3 bound to each of the MT3-positive cell lines, it showed significantly weaker binding to HLA-DR4 and -DRw9 cells relative to -DR7 cells, both in titration and in quantitative absorption assays. This differential pattern of binding was not found for the polyclonal MT3 alloantisera, suggesting that the PL3 determinant may be one of several closely related determinants that comprise the MT3 allospecificity. To identify which of the subpopulations of class II molecules carry the PL3 determinant, several approaches have been used. F(ab')2 fragments of PL3 which block the anti-MT3 alloantisera were also tested with anti-MB2 and anti-DR7 sera. Binding of the PL3 F(ab')2 fragments to DR7 homozygous target cells had no effect on the anti-MB2 sera, but significantly enhanced the cytotoxic reactivity of some anti-DR7 sera. This finding suggested that the PL3 determinant is distinct from the DR7 determinant, but is carried on the same molecule. PL3 was also used in blocking studies with allocytotoxic T cell clones which only recognize DR7-positive cell lines. Binding of PL3 to the DR7-positive target cells was found to completely inhibit these T cell clones. Complete blocking was also found with a monoclonal antibody, PL8, which recognizes a monomorphic determinant found on the DR subpopulation of class II molecules. This finding suggested that the PL3 determinant is carried on the same molecule that carries these T cell-defined DR7 allodeterminants. In biochemical studies with DR7-positive cell lines, PL3 and PL8 were found to immunoprecipitate the same subpopulation of class II molecules recognized by other DR-specific antibodies, SG157 and TAL-1B5. Two-dimensional gel analysis demonstrated that the pattern of alpha- and beta-chains immunoprecipitated by PL3, PL8, and TAL-1B5 were identical. In sequential immunoprecipitation studies, both PL3 and TAL-1B5 were capable of removing the same DR subpopulation of molecules recognized by PL3, PL8, TAL-1B5, or SG157 while leaving the additional class II molecules (DS) recognized by SG171 on DR7 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The contributions of the amino acids at 13 polymorphic positions in the HLA-DR7 beta 1 chain to T cell recognition of two antigenic peptides of tetanus toxin (p2 and p30) were assessed using transfectants expressing mutant DR7 beta 1 chains as APC for six toxin-specific T cell clones with two different restriction patterns: monogamous (restricted by DR7 only) or promiscuous (restricted by DR7; DR1; DR2, Dw21; and DR4, Dw4). Each of the 13 substitutions significantly decreased or eliminated the ability of the DR7 molecule to present a peptide to one or more of the T cell clones, but none of the substitutions abolished recognition by all clones. Interestingly, substitutions at positions 4 and 25, which are predicted in the class II model to be located outside the peptide binding groove, decreased the ability of the DR7 molecule to present Ag to some clones but not to others. Each of the four clones specific for the p2 peptide and the two clones specific for peptide p30 had a different reactivity pattern to the panel of DR7 beta 1 mutants, indicating that the TCR of each clone has a different view of the p2/DR7 or p30/DR7 complex. These data emphasize the complexity of the interactions of multiple residues in DR7 beta 1 chains in Ag-specific T cell recognition.  相似文献   

18.
Our laboratory recently demonstrated the pattern of cell surface glycosylation of nonsecretory central airway epithelium (Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, and White SR. Histochem J 31: 145-151, 1999), but the role of glycosylation in airway epithelial cell migration and repair is unknown. We examined the functional role of cell surface carbohydrates in wound repair after mechanical injury of 1HAEo(-) human airway epithelial and primary bronchial epithelial monolayers. Wound repair stimulated by epidermal growth factor was substantially attenuated by 10(-7) M tunicamycin (TM), an N-glycosylation inhibitor, but not by the inhibitors deoxymannojirimycin or castanospermine. Wound repair of 1HAEo(-) and primary airway epithelial cells was blocked completely by removal of cell surface terminal fucose residues by alpha-fucosidase. Cell adhesion to collagen matrix was prevented by TM but was only reduced ~20% from control values with prior alpha-fucosidase treatment. Cell migration in Blind Well chambers stimulated by epidermal growth factor was blocked by pretreatment with TM but alpha-fucosidase pretreatment produced no difference from control values. These data suggest that cell surface N-glycosylation has a functional role in airway epithelial cell adhesion and migration and that N-glycosylation with terminal fucosylation plays a role in the complex process of repair by coordination of certain cell-cell functions.  相似文献   

19.
The supertypic HLA-DRw53 specificity is associated with three allelic class II specificities defined by alloantisera: HLA-DR4, -DR7, and DRw9. The present study demonstrates the complexity of this supertypic DR specificity by comparing two DRw53-related determinants defined by the monoclonal antibodies PL3 and 109d6. For every HLA-DR4 cell line tested, both monoclonal antibodies were found to bind to the same subpopulation of DR molecules. This PL3+, 109d6+ DR subpopulation is also found on most, but not all, DR7+ cell lines with a beta-chain pattern that is identical to the beta-chain pattern of the PL3+, 109d6+ subpopulation on DR4 cell lines. However, some DR7+ cells which carry the HLA haplotype Bw57, DR7, DRw53, DQw3 were also found which completely lack the expression of the 109d6 determinant, but continue to express the PL3 determinant and some of the DRw53 determinants recognized by alloantisera. This results from the fact that the PL3 determinant is expressed on all of the DR molecules found on DR7 cells, including the distinct subpopulation of molecules that carry the HLA-DR7 determinant recognized by the monoclonal antibody SFR16-DR7. This PL3+, SFR16-DR7+ subpopulation does not carry the 109d6 determinant, demonstrating that the PL3 and 109d6 DRw53-related determinants are distinct and can be expressed on a different number of DR molecules, depending on the allotype of the cells. Blocking studies were also performed by using these monoclonal antibodies with alloreactive HLA-DR7-specific cytotoxic T cell clones. In these studies, the T cell-defined HLA-DR7 determinants were found to be carried by the same subpopulation of DR molecules recognized by the HLA-DR7-specific monoclonal antibody and not carried by the DR molecules recognized by 109d6. The DR7+ cell lines which do not express the 109d6 determinant also fail to express another supertypic determinant recognized by the monoclonal antibody IIIE3 carried on this molecule. Furthermore, no additional allelic forms of this unique DR beta-chain were found associated with the nonpolymorphic DR alpha-chain on these cells, suggesting that this DR beta-chain gene is not expressed. These cells also behave as homozygous typing cells for the Dw11 subtype of DR7 in HLA-D typing in the mixed lymphocyte culture assay. This suggests that the lack of expression of a specific class II gene may contribute additional genetic polymorphism within the known HLA-DR allotypes.  相似文献   

20.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号