首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies in our laboratory have shown that the principal pathway of phosphatidylcholine (PtdCho) degradation in cultured mouse N1E-115 neuroblastoma, C6 rat glioma, primary rat brain glia and human fibroblasts is PtdCho----lysophosphatidylcholine (lysoPtdCho)----glycerophosphocholine (GroPCho)----glycerophosphate plus choline (Morash, S.C. et al. (1988) Biochim. Biophys. Acta 961, 194-202). GroPCho is the first quantitatively major degradation product in this pathway, and could be formed by phospholipases A1 or A2, followed by lysophospholipase, or by a co-ordinated attack releasing both fatty acids by phospholipase B. The quality and quantities of lysoPtdCho present in cells reflect the nature of the initial hydrolysis step (A1 or A2), specificities of the lysophospholipases, and activities of acyltransferases that form PtdCho from lysoPtdCho. The present study was undertaken to elucidate the relative importance of these pathways by examining the fate of exogenous 1-acyl and 2-acyl-lysoPtdCho incubated with N1E-115 and C6 cells in culture. By fatty acid composition, endogenous lysoPtdCho was found to be mainly 1-acyl in both cell types based on a predominance of saturated acyl species; this suggested either preferential further deacylation or reacylation of 2-acyl-lysoPtdCho, or that 2-acyl-lysoPtdCho was not formed. Exogenous 1- and 2-acyl-lysoPtdCho specifically radiolabelled with choline and/or fatty acid were incubated either singly or as equimolar mixtures with cells. Cell association was rapid and not reversible by washing and both species were taken up at similar rates. The 2-acyl species was acylated to PtdCho faster than the 1-acyl species in both cell lines. Acylation of both lyso species was higher in C6 compared to N1E-115 cells. Hydrolysis of lysoPtdCho to GroPCho was higher in N1E-115 cells and with 1-acyl-lysoPtdCho. Transacylation between two molecules of lysoPtdCho was a minor pathway. These results document the variety and relative importance of reactions of lysoPtdCho metabolism; under similar conditions, 1- and 2-acyl-lysoPtdCho are handled differently. Both species turn over actively, but only the 1-acyl species accumulates while 2-acyl-lysoPtdCho is likely to be reacylated to form PtdCho.  相似文献   

2.
The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.  相似文献   

3.
Choline deficiency and treatment with methotrexate (MTX) both are associated with fatty infiltration of the liver. Choline, methionine, and folate metabolism are interrelated and converge at the regeneration of methionine from homocysteine. MTX perturbs folate metabolism, and it is possible that it also influences choline metabolism. We fed rats a choline deficient diet for 2 weeks and/or treated them with methotrexate (MTX; 0.1 mg/kg daily). Choline deficiency lowered hepatic concentrations of choline (to 43% control), phosphocholine (PCho; to 18% control), glycerophosphocholine (GroPCho; to 46% control), betaine (to 30% control), phosphatidylcholine (PtdCho; to 62% control), methionine (to 80% control), and S-adenosylmethionine (AdoMet; to 57% control), while S-adenosylhomocysteine (AdoHcy) and triacylglycerol concentrations increased (to 126% and 319% control, respectively). MTX treatment alone lowered hepatic concentrations of PCho (to 48% control), GroPCho (to 69% control), betaine (to 55% control), and AdoMet (to 75% control). The addition of MTX treatment to choline deficiency resulted in a larger decrease in AdoMet concentrations (to 75% control) and larger increases in AdoHcy and triacylglycerol concentrations (to 150% and 500% control, respectively) than was observed in choline deficiency alone. Livers from MTX-treated animals used radiolabeled choline to make the same metabolites as did livers from controls (most of the label was converted to PCho and betaine). In choline deficient animals, most of the labeled choline was converted to PtdCho. Therefore, MTX depleted hepatic PCho, GroPCho, and betaine by a mechanism that was different from that of choline deficiency. MTX increased the extent of fatty infiltration of the liver in choline deficient rats, and choline deficiency and MTX treatment damaged hepatocytes as measured by leakage of alanine aminotransferase activity. Our data are consistent with the hypothesis that the fatty infiltration of the liver associated with MTX treatment occurs because of a disturbance in choline metabolism.  相似文献   

4.
Differences between the influences of phorbol esters (such as 4 beta-12-O-tetradecanoylphorbol 13-acetate) and of fatty acids (such as oleic acid) on the synthesis and turnover of phosphatidylcholine (PtdCho) and other phospholipids have been studied in glioma (C6), neuroblastoma (N1E-115), and hybrid (NG108-15) cells in culture using [methyl-3H]choline, [32P]Pi, [1,2-14C]ethanolamine, or 1-14C-labeled fatty acids as lipid precursors. 100-500 microM oleic acid stimulated PtdCho synthesis 3- to 5-fold in all three cell lines, but had little influence on chase of choline label following a 24-h pulse. Phorbol ester (50-200 nM) stimulated PtdCho synthesis 1.5- to 3-fold in C6 cells, was without effect in N1E-115 cells, and had intermediate effects on NG108-15 cells. Phorbol ester stimulated both uptake of extracellular choline and synthesis of PtdCho, whereas fatty acid stimulated only synthesis. Release of radioactivity from 24-h pulse-labeled PtdCho to the medium was enhanced by phorbol ester in C6 cells. Incorporation of [32P]Pi, primarily into PtdCho, was stimulated, whereas utilization of [1,2-14C]ethanolamine or 1-14C-fatty acid was little altered by phorbol ester. C6 cells "down-regulated" with phorbol ester lost the stimulatory response of subsequent treatment with phorbol esters on PtdCho synthesis, but the response to fatty acid was enhanced. Fatty acid had little influence on the relative binding of phorbol ester or "translocation" of phorbol ester binding sites. Accordingly, metabolism of phospholipids in these cultured cells of neural origin is markedly influenced by cell type, phospholipid class, condition of incubation medium, and nature of stimulator. Phorbol esters and fatty acids appear to enhance phospholipid synthesis and turnover by distinct intracellular mechanisms.  相似文献   

5.
Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process.  相似文献   

6.
The C3H/10T1/2 Cl8 HAbetaC2-1 cells used in this study express a peptide with a sequence shown to bind receptor for activated C-kinase (RACK1) and inhibit cPKC-mediated cell functions. Phorbol myristoyl acetate (PMA) strongly stimulated phosphatidylcholine (PtdCho)-specific phospholipase D (PLD) activity in the C3H/10T1/2 Cl8 parental cell line, but not in Cl8 HAbetaC2-1 cells, indicating that full PLD activity in PMA-treated Cl8 cells is dependent on a functional interaction of alpha/betaPKC with RACK1. In contrast, the PMA-stimulated uptake of choline and its subsequent incorporation into PtdCho, were not inhibited in Cl8 HAbetaC2-1 cells as compared to Cl8 cells, indicating a RACK1-independent but PKC-mediated process. Increased incorporation of labelled choline into PtdCho upon PMA treatment was not associated with changes of either CDP-choline: 1,2-diacylglycerol cholinephosphotransferase activity or the CTP:phosphocholine cytidylyltransferase distribution between cytosol and membrane fractions in Cl8 and Cl8 HAbetaC2-1 cells. The major effect of PMA on the PtdCho synthesis in C3H/10T1/2 fibroblasts was to increase the cellular uptake of choline. As a supporting experiment, we inhibited PMA-stimulated PtdH formation by PLD, and also putatively PtdH-derived DAG, in Cl8 cells with 1-butanol. Butanol did not influence the incorporation of [(14)C]choline into PtdCho. The present study shows: (1) PMA-stimulated PLD activity is dependent on a functional interaction between alpha/betaPKC and RACK1 in C3H/10T1/2 Cl8 fibroblasts; and (2) inhibition of PLD activity and PtdH formation did not reduce the cellular uptake and incorporation of labelled choline into PtdCho, indicating that these processes are not directly regulated by PtdCho-PLD activity in PMA-treated C3H/10T1/2 Cl8 fibroblasts.  相似文献   

7.
Eukaryotic cells control the levels of their major membrane lipid, phosphatidylcholine (PtdCho), by balancing synthesis with degradation via deacylation to glycerophosphocholine (GroPCho). Here we present evidence that in both yeast and mammalian cells this deacylation is catalyzed by neuropathy target esterase (NTE), a protein originally identified by its reaction with organophosphates, which cause nerve axon degeneration. YML059c, a Saccharomyces cerevisiae protein with sequence homology to NTE, had similar catalytic properties to the mammalian enzyme in assays of microsome preparations and, like NTE, was localized to the endoplasmic reticulum. Yeast lacking YML059c were viable under all conditions examined but, unlike the wild-type strain, did not convert PtdCho to GroPCho. Despite the absence of the deacylation pathway, the net rate of [(14)C]choline incorporation into PtdCho in YML059c-null yeast was not greater than that in the wild type; this was because, in the null strain diminished net uptake of extracellular choline and decreased formation of the rate-limiting intermediate, CDP-choline, resulted in a reduced rate of PtdCho synthesis. In [(14)C]choline labeling experiments with cultured mammalian cell lines, production of [(14)C]GroPCho was enhanced by overexpression of catalytically active NTE and was diminished by reduction of endogenous NTE activity mediated either by RNA interference or organophosphate treatment. We conclude that NTE and its homologues play a central role in membrane lipid homeostasis.  相似文献   

8.
Human fibroblasts in culture take up exogenous [choline-Me-3H,32P]sphingomyelin (SM) from the medium and incorporate it into cellular SM and phosphatidylcholine [Spence, Clarke & Cook (1983) J. Biol. Chem. 258, 8595-8600]. The ratio of [3H]choline/[32P]Pi is similar in SM and phosphatidylcholine, indicating that the phosphocholine (P-Cho) moiety is transferred intact. Similar results are obtained with Niemann-Pick (NP) cells which are deficient in lysosomal sphingomyelinase activity, suggesting that the P-Cho transfer may not be mediated by the lysosomal sphingomyelinase and that alternative pathways of sphingomyelin catabolism are present in cultured cells. In this study we have shown that: (1) the P-Cho pool in control and NP cells incubated with exogenous labelled SM has a specific radioactivity intermediate between that of SM and PtdCho; (2) expansion of the intracellular P-Cho pool by incubation with exogenous choline reduces the incorporation of [3H]choline from SM into PtdCho; and (3) incorporation of P-Cho from SM into PtdCho is decreased at the non-permissive temperature in Chinese hamster ovary cells with a temperature-sensitive mutation in the cytidylyltransferase reaction. These results suggest that incorporation of P-Cho from SM into PtdCho involves a reaction sequence in which P-Cho is hydrolysed from SM by a sphingomyelinase, followed by incorporation of P-Cho into PtdCho via the cytidine pathway of biosynthesis (SM----P-Cho----CDP-Cho----PtdCho). The appreciable incorporation of P-Cho from SM into PtdCho in sphingomyelinase-deficient NP cells suggests a more substantial or effective lysosomal sphingomyelinase activity in intact cells than is measured in vitro, and/or a significant contribution by other sphingomyelinase activities in these cells.  相似文献   

9.
The effects of the potent tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on phosphatidylcholine (PtdCho) metabolism were investigated in the neuroblastoma X glioma hybrid cell line NG108-15. TPA (100 nM) stimulated by 150-200% the release into the medium of 3H radioactivity from cells that had been pre-labelled with [3H]choline. H.p.l.c. analysis of the medium revealed that TPA stimulated the release of only free [3H]choline (212 +/- 11% of control), without affecting such other labelled metabolites as [3H]phosphocholine and [3H]glycerophosphocholine. This effect was concentration-dependent, with a half-maximal effect obtained at 27.5 +/- 6.8 nM, and was observable as early as 5-10 min after exposure to TPA. The TPA-induced release of [3H]choline into the medium was accompanied by a small and variable decrease in cellular [3H]PtdCho (to 93 +/- 4% of control). However, the radioactivity associated with water-soluble cellular choline metabolites (mainly [3H]phosphocholine and [3H]glycerophosphocholine) remained unchanged. TPA also stimulated the release of [3H]choline derived from [3H]PtdCho that had been produced via the methylation pathway from [3H]methionine. These data suggest that phosphatidylcholine may serve as the source of free choline released from the cells in response to TPA. The possible enzymic mechanisms underlying this response are discussed.  相似文献   

10.
The major route of phosphatidylcholine (PtdCho) biosynthesis in mammalian cells is the sequence: choline (Cho)----phosphocholine (PCho)----cytidinediphosphate choline (CDP-Cho)----PtdCho. Recently, we have found that intermediates of this pathway are not freely diffusible in cultured rat glioma (C6) cells but are channeled towards PtdCho biosynthesis (George et al. (1989). Biochim. Biophys. Acta. 1004, 283-291). Channeling of intermediates in other mammalian systems is thought to be mediated through adsorption of enzymes to membranes and cytoskeletal elements to form multienzyme complexes. In this study, agents which perturb the structure and function of cytoskeletal elements were tested for effects on phospholipid metabolism in glioma cells. The filament-disrupting agent cytochalasin B (CB), but not other cytochalasins or the microtubule depolymerizer colchicine inhibited PtdCho and phosphatidylethanolamine (PtdEtn) biosynthesis as judged by dose-dependent reduction of labeling from [3H]Cho and [14C]ethanolamine (Etn). 32Pi pulse-labeling indicated that CB selectively decreased PtdCho and PtdEtn biosynthesis without affecting synthesis of other phospholipids. Synthesis of water-soluble intermediates of PtdCho metabolism was unaffected but the conversion of phosphoethanolamine to CDP-ethanolamine was reduced by CB. Effects of CB on phospholipid biosynthesis were not due to inhibition of glucose uptake as shown by experiments with 2-deoxyglucose, glucose-starved cells and other cytochalasins. Experiments with Ca(2+)-EGTA buffers and digitonin-permeabilized cells, and the Ca(2+)-channel blocker verapamil suggest that effects of CB on PtdCho and PtdEtn biosynthesis are due to alteration of intracellular Ca2+. Taken together, these results suggest that CB acts at sites distinct from glucose transport and cellular microfilaments to specifically inhibit PtdCho and PtdEtn biosynthesis by mechanisms dependent on intracellular Ca2+.  相似文献   

11.
1. Adult squirrel monkeys were injected intravenously with doubly labelled lysophosphatidylcholine (a mixture of 1-[1-(14)C]palmitoyl-sn-glycero-3-phosphorylcholine and 1-acyl-sn-glycero-3-phosphoryl[Me-(3)H]choline; (3)H:(14)Cratio 3.75) complexed to albumin, and the incorporation into the brain was studied at times up to 3h. 2. After 20min, 1% of the radioactivity injected as lysophosphatidylcholine had been taken up by the brain. 3. Approx. 70% of the doubly labelled lysophosphatidylcholine taken up by both grey and white matter was converted into phosphatidylcholine, whereas about 30% was hydrolysed. 4. The absence of significant radioactivity in the phosphatidylcholine, free fatty acid and water-soluble fractions of plasma up to 30min after injection of doubly labelled lysophosphatidylcholine rules out the possibility that the rapid labelling of these compounds in brain could be due to uptake from or exchange with their counterparts in plasma. 5. The similarity between the (3)H:(14)C ratios of brain phosphatidylcholine and injected lysophosphatidylcholine demonstrates that formation of the former occurred predominantly via direct acylation. 6. Analysis of the water-soluble products from lysophosphatidylcholine catabolism revealed that appreciable glycerophosphoryl-[Me-(3)H]choline did not accumulate in the brain and that radioactivity was incorporated into choline, acetylcholine, phosphorylcholine and betaine. 7. The role of plasma lysophosphatidylcholine as both a precursor of brain phosphatidylcholine and a source of free choline for the brain is discussed.  相似文献   

12.
The metabolism of GM3 ganglioside in cultured human foreskin fibroblasts was investigated by labeling cultured cells with [1-3H]-galactose for 48 hours, followed by a 48 hour chase. More than 80% of the radioactivity associated with GM3 was found in the hexose portion of the carbohydrate chain, whereas approximately 12% of the radioactivity was observed in the sialic acid moiety. The hexose and sialic acid residues lost 42% and 53% of their initial radioactivity, respectively, during the chase period, indicating an active metabolism of these sugar residues of GM3 in growing cultures.  相似文献   

13.
The levels of choline intermediate endogenous pools in structures of the visual system (retina, optic nerve, lateral geniculate body, superior colliculus) and in sciatic nerve of adult (4-month-old) and young (30-day-old) rats were measured. The amounts were also obtained from retina, optic nerve, optic tectum and cranio-spinal nerves of a primitive elasmobranch, the smooth dogfish Mustelus canis, and from related nervous structures (retina, optic lobe, fin nerve, stellar nerve and stellate ganglia) of a marine invertebrate, the squid Loligo pealei. In all regions of rat nervous system, the pool size of CDP-choline was much smaller than that of free choline, whereas GroPCho was present in a relatively higher content. The pool sizes of choline intermediates in 30- and 120-day-old rats were nearly the same. In nervous system regions of the dogfish and squid, the values followed the same general trend as observed for rat. Squid nervous tissues had the lowest choline and GroPCho contents. The rat retina showed the lowest glycerophosphorylcholine phosphodiesterase activity. The chemical studies described here confirm the basic similarity in the pattern of choline intermediate pool sizes among animal species widely different in phylogenetic position. The data highly reinforce the idea that the precursor role of choline and catabolic pathways for the maintenance of the PtdCho membraneous pool seem highly conserved during evolution.  相似文献   

14.
The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger than both the choline and CDPcholine pools. Chemical measurements of the pool sizes showed that the choline phosphate pool was indeed much larger than the intracellular choline and CDPcholine pools. Pulse-chase studies with [Me-3H]choline revealed that labelled choline taken up by the cells was rapidly phosphorylated to choline phosphate and that the radioactivity lost from choline phosphate during the chase period appeared in phosphatidylcholine. Little change was observed in the labelling of CDPcholine during the chase period. These results indicate that cholinephosphate cytidylyltransferase catalyzes a rate-limiting reaction in phosphatidylcholine formation by fetal rat lung type II cells.  相似文献   

15.
The metabolism of brain natriuretic peptide (BNP) was studied in rats infused with 125I-BNP. During the infusion, the intact peptide was progressively converted to labelled degradative products, separated into nine peaks of radioactivity on HPLC, and accounting for approximately 70% of total plasma radioactivity at the plateau phase. After stopping the infusion, intact BNP disappeared with a half-life of 1.23 +/- 0.35 min whereas the labelled fragments accounted for progressively greater proportion of total activity. The degradation of BNP was significantly reduced by phosphoramidon (t1/2, 11.28 +/- 0.49 min) and captopril (t1/2, 6.99 +/- 0.34 min). A maximal effect was observed when both protease inhibitors were given simultaneously (t1/2, 15.3 +/- 0.48 min). When 125I-BNP was incubated in vitro with purified endopeptidase 24.11 (E-24.11) and angiotensin-converting enzyme (ACE), there was a time-dependent disappearance of the intact peptide associated with the generation of six labelled fragments, corresponding to fragments found in vivo. In serum the peptide was rapidly degraded with a half-life of 4.6 +/- 0.1 min, and the pattern of labelled fragments was similar to that observed during in vitro incubation with ACE. Captopril significantly reduced the rate of degradation of BNP in serum. The results allow to associate two define enzyme activities, namely E-24.11 and ACE, with the metabolism of BNP in vitro. They also indicate that, despite a close homology between ANP and BNP, the two peptides undergo different pathways of clearance.  相似文献   

16.
Glycerophosphocholine (GroPCho) is a diester that accumulates in different physiological processes leading to phospholipid remodeling. However, very little is known about its metabolism in higher plant cells. (31)P-Nuclear magnetic resonance spectroscopy and biochemical analyses performed on carrot (Daucus carota) cells fed with GroPCho revealed the existence of an extracellular GroPCho phosphodiesterase. This enzymatic activity splits GroPCho into sn-glycerol-3-phosphate and free choline. In vivo, sn-glycerol-3-phosphate is further hydrolyzed into glycerol and inorganic phosphate by acid phosphatase. We visualized the incorporation and the compartmentation of choline and observed that the major choline pool was phosphorylated and accumulated in the cytosol, whereas a minor fraction was incorporated in the vacuole as free choline. Isolation of plasma membranes, culture medium, and cell wall proteins enabled us to localize this phosphodiesterase activity on the cell wall. We also report the existence of an intracellular glycerophosphodiesterase. This second activity is localized in the vacuole and hydrolyzes GroPCho in a similar fashion to the cell wall phosphodiesterase. Both extra- and intracellular phosphodiesterases are widespread among different plant species and are often enhanced during phosphate deprivation. Finally, competition experiments on the extracellular phosphodiesterase suggested a specificity for glycerophosphodiesters (apparent K(m) of 50 microM), which distinguishes it from other phosphodiesterases previously described in the literature.  相似文献   

17.
Staphylococcus aureus H growing exponentially was labelled with N-acetyl[14C]glucosamine, which became incorporated into the peptidoglycan. The portion of peptidoglycan not linked to teichoic acid (60-75% of the whole) was degraded with Chalaropsis muramidase to yield disaccharide-peptide monomers and dimers, trimers and oligomers formed by biosynthetic cross-linking of the monomers. The degree of O-acetylation of these fragments was also examined. Pulse-chase experiments showed that the proportion of label initially in the monomer fraction immediately after the 1 min pulse declined rapidly during a 3 min chase, while the oligomer fraction (fragments greater than trimer) gained the radioactivity proportionately. The radioactivity of the dimer and trimer fractions remained virtually unchanged. At 4 min after the commencement of labelling (i.e. approx. one-tenth of a generation time) final values had been reached. The O-acetylation of all fragments had achieved final values even at 1 min, except for the monomer fraction, which showed an increase from 40% to 60% during the first 3 min of chase. Although O-acetylation was clearly a very rapid process, no O-acetylated peptidoglycan lipid-intermediates could be detected.  相似文献   

18.
The remodeling of the fatty acyl moieties of phosphatidylcholine (PC) has been studied in choline-deficient and choline-supplemented hepatocytes prepared from a choline-deficient rat. Choline-deficient hepatocytes were prelabeled with [Me-3H]choline for 30 min and subsequently incubated for up to 12 h in the presence or absence of choline. Analysis of the molecular species of PC from choline-deficient cells showed that, at the end of the pulse, approx. 75% of the label was incorporated into palmitate-containing species and only approx. 16% of the labeled species contained stearate. During the chase period there was a redistribution of label and after 12 h approx. 56% of the total radioactivity was associated with palmitate containing species and 37% was recovered in stearate-containing species. A similar distribution of radioactivity was observed in choline-supplemented cells. Measurement of the specific radioactivity of the major molecular species of PC was consistent with a precursor-product relationship between palmitate-containing species and stearate-containing species with arachidonate or linoleate on the sn-2 position. A model is presented which takes into account remodeling of both the sn-1 and sn-2 positions of PC.  相似文献   

19.
In eukaryotes, neuropathy target esterase (Nte1p in yeast) deacylates phosphatidylcholine derived exclusively from the CDP-choline pathway to produce glycerophosphocholine (GroPCho) and release two fatty acids. The metabolic fate of GroPCho in eukaryotic cells is currently not known. Saccharomyces cerevisiae contains two open reading frames predicted to contain glycerophosphodiester phosphodiesterase domains, YPL110c and YPL206c. Pulse-chase experiments were conducted to monitor GroPCho metabolic fate under conditions known to alter CDP-choline pathway flux and consequently produce different rates of formation of GroPCho. From this analysis, it was revealed that GroPCho was metabolized to choline, with this choline serving as substrate for renewed synthesis of phosphatidylcholine. YPL110c played the major role in this metabolic pathway. To extend and confirm the metabolic studies, the ability of the ypl110cDelta and ypl206cDelta strains to utilize exogenous GroPCho or glycerophosphoinositol as the sole source of phosphate was analyzed. Consistent with our metabolic profiling, the ypl206cDelta strain grew on both substrates with a similar rate to wild type, whereas the ypl110cDelta strain grew very poorly on GroPCho and with moderately reduced growth on glycerophosphoinositol.  相似文献   

20.
Isolated adrenocortical cells of guinea pigs whom injected with prolactin (PRL) during 3 days incorporated [3H] choline into phosphatidylcholine more intensively than those cells of animals in control. Labelling of intracellular pools of choline and phosphorylcholine remained unchanged, though a part of radioactivity represented by the water-soluble precursors decreased due to PRL influence. The rate of disappearance of labelled phosphatidylcholine in adrenocortical cells prelabelled with [3H] choline was lower in cells obtained from PRL-treated animals. The discharge of [3N] choline accumulated during prelabeling accelerated simultaneously. Rate of the phosphorylcholine radioactivity fall remained unchanged. The obtained data showed that prolonged influence of PRL caused a shift of the phosphatidylcholine metabolism to anabolism. That effect might be a part of the mechanism of proliferative PRL action in the adrenal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号