首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytogenetic effects in mice chronically fed the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP) were evaluated by chromosome painting, micronucleated normochromatic erythrocytes (MN NCEs) and sister chromatid exchanges (SCEs). PhIP and numerous other heterocyclic amines have been isolated from cooked foods, and many have been found to be carcinogenic in laboratory rodents. Female C57BL/6N mice were chronically fed a diet containing 0, 100, 250 or 400 ppm of PhIP beginning at 8 weeks of age. Peripheral blood and bone marrow were taken from 5 mice per treatment group at 1, 4 and 6 months from the start of exposure. PhIP was removed from the diet for a final month of the experiment, at which time blood was taken from the remaining animals. Chromosome-specific composite DNA probes for mouse chromosomes 2 and 8 were hybridized to metaphase cells from each tissue. The 1- and 4-month time points showed no statistically significant difference between the control and exposed mice for either tissue in chromosome aberration frequencies. Both MN NCEs and SCEs were analyzed at a single time point during exposure (4 months for MN NCEs and 6 months for SCEs) and again 1 month after removing PhIP from the diet. MN NCEs in the peripheral blood showed a statistically significant dose response, with all values decreasing significantly 1 month after removing PhIP from the diet. SCE frequencies in the peripheral blood showed an approximate doubling compared to control mice, and decreased to control levels 1 month after removing PhIP from the diet. SCE frequencies in the bone marrow of exposed mice showed no difference from the control animals. These results show that chronic ingestion of PhIP by female C57BL/6 mice does not produce persistent cytogenetic damage as visualized by chromosome aberrations, MN NCEs or SCEs.  相似文献   

2.
Atrazine, simazine, and cyanazine are widely used preemergence and postemergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. Although there are several contradictory genotoxicity studies in the literature, our previous in vitro studies with human lymphocytes showed that atrazine, simazine, and cyanazine did not induce sister chromatid exchanges (SCEs) or chromosome aberrations (CAs) up to the limits of solubility in aqueous medium using 0.5% dimethyl sulfoxide. To expand upon these results and to ensure that our in vitro findings could be replicated in an in vivo system, mice were treated with each triazine by two intraperitoneal injections, 24h apart. The animals were sacrificed and the bone marrow removed for micronucleus (MN) analysis, 24h after the last injection. Two to four independent trials were performed for MN analysis in polychromatic erythrocytes, and in some trials the spleen was removed, cultured, and analyzed for SCEs and CAs. None of the triazines investigated induced MN in the bone marrow, even at doses that caused significant bone marrow suppression and/or death. These results indicate that atrazine, simazine, and cyanazine are not genotoxic as measured by the bone marrow MN assay in mice following high dose exposures.  相似文献   

3.
The modifying effects of tannin components extracted from green tea and black tea on mutagen-induced SCEs and chromosome aberrations were studied. These tannin components did not affect spontaneous SCEs and chromosome aberrations in cultured Chinese hamster cells. The frequency of SCEs and chromosome aberrations induced by mitomycin C (MMC) or UV was enhanced by the posttreatment with tea tannin components. When cells were post-treated with tea tannin components in the presence of metabolic enzymes of rat liver (S9 mix), the modifying effects on the induction of SCEs and chromosome aberrations by mutagens were complicated. MMC- and UV-induced SCEs and chromosome aberrations were suppressed by the posttreatment with tea tannin components at low concentrations (less than or equal to 6.7 micrograms/ml) with S9 mix. At a high concentration of tea tannin components (20 micrograms/ml) with S9 mix, a co-mutagenic effect was observed. The modifying effects of tea tannin components were shown to occur in the G1 phase of the cell cycle. In cells from a patient with xeroderma pigmentosum (XP) and a normal human embryo, MMC-induced SCEs were suppressed by the posttreatment with tea tannin components in the presence of S9 mix, and enhanced in the absence of S9 mix. On the other hand, tea tannin components modified SCE frequencies in UV-irradiated normal human cells but not in UV-irradiated XP cells. Our results suggested that tea tannin components themselves inhibited DNA-excision repair and resulted in a co-mutagenic effect, while in the presence of S9 mix metabolites of tea tannin components promoted DNA-excision repair activity and resulted in an antimutagenic effect. MMC-induced chromosome aberrations in mouse bone marrow cells were suppressed by the pretreatment with green tea and black tea tannin mixture.  相似文献   

4.
In several acute and chronic exposures to various chemicals in vivo and in vitro, the average sister-chromatid exchange (SCE) frequencies in human, mouse, rat, and rabbit lymphocytes generally decrease with time following treatment. The rate of this decline varies, but little data have been published pertaining to the comparative kinetics of SCEs both in vivo and in vivo/in vitro (exposure of animals to the test compound and culturing of cells) simultaneously in the same tissues. In this study, a single dose of cyclophosphamide (40 mg/kg) was injected for varying periods (6-48 h) and its effects, as assessed by the induction of SCEs, were analyzed under both in vivo and in vivo/in vitro conditions in mouse bone marrow and spleen cells. In vivo, the cyclophosphamide-induced SCEs increased with increasing time up to 12 h, stayed at approximately the same level until 24 h, and then decreased with increase in post-exposure time. However, the SCE levels remained significantly higher than controls at 48 h post-exposure time in both bone marrow and spleen cells. Under in vivo/in vitro conditions, the SCEs in bone marrow decreased with increase in post-exposure time until reaching control values by 48 h post exposure. However, in spleen cells, the decrease in SCE level was gradual, and by 48 h post-exposure time, the cells still had approximately 6 times higher SCEs than the control values. These results suggest that there are pharmacokinetic differences for cyclophosphamide in mouse bone marrow and spleen. Also, there is a differential SCE response to cyclophosphamide under in vivo and in vivo/in vitro conditions.  相似文献   

5.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

6.
LEC strain rats predisposed to hereditary hepatitis and liver cancer were examined for hepatic drug-metabolizing ability and the inducibility of chromosome damage by cyclophosphamide (CP) in somatic cells. Whereas the hepatic cytochrome P-450 contents and the activities of cytochrome P-450-catalyzed monooxygenases were lower in females than in males of both LEC and control LEA strains, male LEC rats exhibited significantly reduced cytochrome P-450 contents and monooxygenase activities compared with male LEA rats. When exposed to CP, a promutagen/procarcinogen requiring P-450-dependent metabolic activation, the frequencies of chromosome aberrations and sister-chromatid exchanges (SCEs) in bone marrow cells tended to be lower in females than in males of each strain and lower in LEC than in LEA rats of the same sex. In particular, the CP-induced SCEs were substantially lower in LEC rats. However, no such sex and strain differences were found in the SCE frequencies in regenerating hepatocytes of partially hepatectomized rats exposed to CP.  相似文献   

7.
S Y Li  J K Lin 《Mutation research》1990,242(3):219-224
Rats were treated intraperitoneally with different concentrations of aflatoxin B1 (AFB1) or N-nitrosophenacetin (NP). Blood was sequentially drawn by venous puncture at 6, 24, 72, 120 h and 14 days after a single injection of AFB1 or NP. After AFB1 the frequency of SCEs and chromosome aberrations increased progressively and reached a maximum level after 24 h and then decreased with time. By 2 weeks post treatment, the SCE and chromosome aberration values were within the control range. A small but significant SCE induction was observed when rats were treated with NP, but no chromosome breakage was induced even at the highest dose (20 mg/kg). We suggest that the elimination of DNA damage by repair mechanisms and lymphocyte turnover is responsible for the reduction of SCEs and chromosome aberrations with time. This assay seems promising for sequential monitoring of cytogenetic damage in rat lymphocytes following in vivo exposure to genotoxicants.  相似文献   

8.
We tested the genotoxicity of 3,5,4'-trihydroxystilbene (resveratrol), a polyphenolic phytoalexin found in grapes, in a bacterial reverse mutation assay, in vitro chromosome aberration (CA) test, in vitro micronucleus (MN) test, and sister chromatid exchange (SCE) test. Resveratrol was negative in the strains we used in the bacterial reverse mutation assay (S. typhimurium TA98 and TA100 and E. coli WP2uvrA) in the absence and presence of a microsomal metabolizing system. It induced structural CAs at 2.5-20 microg/ml and showed weak aneuploidy induction in a Chinese hamster lung (CHL) cell line. It induced MN cells and polynuclear and karyorrhectic cells after 48h treatments in the in vitro MN test. In the SCE test, resveratrol caused a clear cell-cycle delay; at 10 microg/ml, the cell cycle took twice as long as it did in the control. Resveratrol induced SCEs dose-dependently at up to 10 microg/ml, at which it increased SCE six-fold, and the number was almost as large as mitomycin C, a strong SCE inducer. No second mitoses were observed at 20 microg/ml even after 54h. Cell cycle analysis by FACScan indicated that resveratrol caused S phase arrest, and 48h treatment induced apoptosis. Our results suggest that resveratrol may preferentially induce SCE but not CA, that is, it may cause S phase arrest only when SCEs are induced.  相似文献   

9.
Chromosome aberrations and sister-chromatid exchanges (SCEs) were examined in 4 ataxia telangiectasia (AT)-derived B-lymphoblastoid cell lines (B-LCLs) (AT-S, AT-SHI, AT-SHI B13A and AsHa) following treatments with neocarzinostatin (NCS) and bleomycin. All of these cell lines exhibited extremely high frequencies of chromosome aberrations with the NCS and bleomycin treatments. Among them, AsHa, a mutant B-LCL originating from an AT patient, showed high frequencies of SCEs under high bromodeoxyuridine (BrdU) concentrations retaining hypersensitivity to NCS and bleomycin with regard to chromosome aberrations. A clear BrdU dose-dependent increase in SCEs (9.85 SCEs/cell at 40 μg/ml, 36.65 SCEs/cell at 100 μg/ml on average) in this mutant was observed. When AsHa mutant cells were treated with NCS (0.02 μg/ml) and/or bleomycin (5.0 μg/ml) under 40 μg/ml BrdU (minimum BrdU concentration for sister-chromatid differential staining), SCE levels increased from 9.85 (baseline level) to 21.1 with NCS and 20.5 with bleomycin, in a dose-dependent manner. These observations indicate that AsHa is a unique AT-derived mutant cell clone with a high SCE character retaining the original hypersensitivity to bleomycin and NCS.  相似文献   

10.
The effect of alleles of the Ah locus on the induction of sister-chromatid exchanges (SCE) was studied in C57Bl/6 and in DBA/2 mice treated twice intragastrically with benzo[a]pyrene (BP, 100 or 10 mg/kg b.w.). To measure the changes in the frequency of SCE, 2 protocols were used: in vivo in bone marrow cells after implantation of 5-bromodeoxyuridine (BrdU) tablets and in vivo/in vitro in spleen lymphocytes cultured with BrdU. On day 5 mice were killed and SCEs estimated in bone marrow cells. BP-DNA adducts in bone marrow and spleen were analyzed on day 5 after the same exposure to BP. In the spleen lymphocytes SCE frequencies were analyzed after an additional 48 h of culture. We found that at both doses of BP, the number of SCEs and BP-DNA adducts in bone marrow and in spleen cells was significantly higher in aryl hydrocarbon hydroxylase (AHH)-non-inducible (DBA/2) mice than in AHH-inducible (C57BL/6) mice. Only marginal induction of SCE was noted after the high dose of BP in C57BL/6 mice in bone marrow in vivo, whereas a highly significant increase in the frequency of SCEs was found in splenocytes in the in vivo/in vitro test. The spleen cells contained larger amounts of BP-DNA adducts and demonstrated higher absolute levels of SCEs than bone marrow cells. The sensitivity of both the in vivo/in vitro and the in vivo SCE test is high enough for assessment of Ah locus-linked differences in BP genotoxicity in mice at the prolonged time between treatment and cell preparation. The present data confirm the influence of inducibility of AHH in the intestine on the genotoxicity of BP to distal tissues after oral exposure to BP.  相似文献   

11.
Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2'-deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment-strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.  相似文献   

12.
The effects of low doses of cyclohexanol exposure were studied in mouse bone marrow cells including chromosome aberrations (CA), micronucleus (MN) and sister chromatid exchanges (SCE) as biomarkers. Capillaries with a tested agent that was evaporated continuously were placed in an experimental chamber for six weeks. No clastogenic and/or aneugenic effect of CA and MN induction was observed. A significant elevation of induced damage was achieved in the SCE study (p < 0.001) that has confirmed the early exposure of cyclohexanol to mice.  相似文献   

13.
In vivo cytogenetic effects of cooked food mutagens   总被引:3,自引:0,他引:3  
Using a variety of in vivo cytogenetic endpoints, we have investigated the effects of several compounds formed during the cooking of meat. C57Bl/6 mice were used to test for an increase in the frequency of sister-chromatid exchanges (SCEs), chromosomal aberrations, and micronucleated erythrocytes by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). MeIQx and DiMeIQx did not induce SCEs in mouse bone marrow cells. PhIP induced sister-chromatid exchanges, but not chromosomal aberrations in bone marrow. In peripheral blood lymphocytes, PhIP did induce aberrations at 100 mg/kg, the highest dose tested. PhIP induced a low but significantly increased frequency of micronuclei in normochromatic but not polychromatic erythrocytes in bone marrow and peripheral blood. However, dose responses were not observed. With the exception of the SCEs induced by PhIP, these results contrast with observations made in vitro, where these compounds were found to have significant genotoxicity in mammalian cells and a very high mutation frequency in prokaryotic systems.  相似文献   

14.
Dose dependencies of the induction of sister chromatid exchanges (SCEs) and chromosome aberrations were studied under in vivo exposure of mouse bone marrow cells to 5 alkylating agents. The efficacy of the induction of SCEs for all the substances was 20 to 60 times higher than that of the induction of chromosome aberrations. It was demonstrated that SCEs induced by chemical mutagens in vivo and in vitro are more sensitive tests than chromosome aberrations.  相似文献   

15.
The BrdU-Hoechst staining technique has been used in analyzing the effect of caffeine (CAF) on chromosome aberrations and sister-chromatid exchanges (SCEs) induced by mitomycin C (MC). CAF increased the frequency of SCE in MC-treated chromosomes in all specimens. The combination of MC and CAF caused a remarkable increase in all types of chromosome aberrations, but the most startling effect was the appearance of many cells with multiple aberrations (shattered chromosomes). The BrdU-Hoechst technique showed that the shattered chromosomes did not appear in cells that had replicated only once, but did occur in cells which replicated twice in the presence of MC and CAF. The large majority of chromatid breaks observed did not involve areas common to SCE; and the SCE frequency significantly increased in spite of the existence of multiple breaks. This indicates that very few of the breaks are incomplete exchanges and that the mechanism for formation of SCE might be different from that of chromosome breaks. In another experiment, monofunctional-MC (M-MC) had a small effect on SCE rates, though it induced shattered chromosomes with CAF post-treatment. Possible differences in the mechanisms leading to SCE and chromosome breaks are discussed.  相似文献   

16.
G Krishna  J Xu  J Nath  M Petersen  T Ong 《Mutation research》1985,158(1-2):81-87
The pesticide, ethylene dibromide (EDB), was evaluated with in vivo cytogenetic assays to determine its genotoxicity. CD1 male mice were exposed to EDB through intraperitoneal injections. Bone marrow cells isolated from femora were analyzed for sister-chromatid exchange (SCE), chromosome aberration and micronucleus formation. The results showed that only certain concentrations of EDB tested caused a slight but significant increase in SCEs and chromosome aberrations. However, these increases were not dose-related. No increase in the polychromatic erythrocytes with micronuclei was observed following EDB exposure. Also, EDB did not cause cell-cycle delay in comparison with controls. Thus, it appears that EDB is not an effective genotoxic agent in vivo in mice.  相似文献   

17.
In the present study, the correlation among several hematic values and the baseline frequencies of sister chromatid exchanges (SCEs), chromosome aberrations (CAs), and micronucleus (MN) were evaluated in human peripheral blood lymphocytes from a group of 1429 volunteers. Donors were selected to be representative of the general population of people living in the city of Pisa (Italy). By the use of the principal component analysis (PCA), principal components (PCs) were extracted from the complex pattern of correlations intrinsic in the hematic values (for example such as those among hemoglobin content, hematocrit, and erythrocyte count), and were tested for correlation on SCE, CA and MN frequencies. The seven PCs extracted (among 20 hematic values) were either positively or negatively correlated with the three cytogenetic endpoints. However, after correction by independent confounding factors (such as the age), with the use of the coefficient of partial correlation (CPC) analysis, only one PC significantly held the correlation with MN frequencies. This PC had the main contribution from the correlation between the concentration of potassium and the activity of alkaline phosphatase. These variables are known to be markers for bone (calcium) metabolism and are negatively correlated with MN frequencies. Because MN can arise from aneuploidy, the hematic concentrations of calcium may be important for stabilizing the mitotic process in stimulated lymphocytes. Finally, our study shows that the analysis of the hematic values adds very little information and removes a meaningless part of variance of the total variability observed for SCEs, CAs and MN.  相似文献   

18.
G Krishna  J Nath  L Soler  T Ong 《Mutation research》1986,171(2-3):157-163
The genotoxicity of an acetone extract of locally collected airborne particles was evaluated both in vitro and in vivo using the sister-chromatid exchange (SCE) assay in mice. At the highest concentration (5.36 mg/5 ml culture), the extract caused approximately a 3-fold increase in SCEs over controls in mouse bone marrow and spleen primary cells in vitro. However, the same airborne particle extract did not induce a significant increase in the SCE level over controls in vivo in mouse bone marrow and spleen cells when administered intraperitoneally or through oral gavage. This indicates that bone marrow and spleen primary cell cultures can be used in in vitro genotoxicity studies of complex mixtures, and that the genotoxicity of airborne particles detected in the in vitro system cannot always be detected in vivo with the same cell types. In addition, the same acetone extract of airborne particles caused dose-related his+ revertants in the strain TA98 of Salmonella typhimurium, both with and without S9 activation. The significant finding of this study is that the in vitro genotoxicity results of airborne particle extract may not be very meaningful in an in vivo situation.  相似文献   

19.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

20.
Certain environmental contaminants found in marine mammals have been shown to cause DNA damage and cancer. The micronuclei (MN), sister chromatid exchange (SCE) and/or chromosome aberration (CA) assays were used to assess baseline (spontaneous) levels of DNA damage in blood lymphocytes of individuals of the relatively healthy and lightly contaminated Arctic beluga whale (Delphinapterus leucas), Sarasota Bay, FL, bottlenose dolphin (Tursiops truncatus) and Northwestern Atlantic grey (Halichoerus grypus) and harp (Phoca groenlandicus) seal populations. MN cell (MNC) frequencies ranged between 2 and 14/1000 binucleated (BN) cells and were statistically similar between species. In bottlenose dolphins, MNC frequency was correlated with age and was significantly higher in females than in males. No intraspecific variation in MNC frequency was found in beluga whales. Intraspecific variation was not tested in seals due to the small sample size. Frequencies of SCEs and total CAs, excluding gaps, ranged, respectively, between 1 and 15 SCE(s)/per cell and 4-6 CAs/100 cells in beluga whales. SCE and CA frequencies did not vary with age or sex in beluga whales. The MN, SCE and CA assays were found to be practical tools for the detection of DNA damage in marine mammals and could be used in the future to compare DNA damage between relatively lightly and highly contaminated populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号