首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reliability of the hydropathy method to predict the formation of membrane-spanning alpha-helices by integral membrane proteins and peptides whose structure is known from X-ray crystallography is analysed. It is shown that Kyte-Doolittle hydropathy plots do not predict accurately 22 transmembrane alpha-helices in the reaction centres (RC) of the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides (R-26). The accuracy of prediction for these proteins was improved using an optimised Kyte-Doolittle hydrophobicity scale. However, this hydrophobicity scale did not improve the predictions for the alphabeta-peptides of the B800-850 (LH2) complexes of the photosynthetic bacteria Rhodopseudomonas acidophila and Rhodospirillum molischianum, which were excluded from the optimisation procedure. The best and worst predictions of membrane-spanning alpha-helices for the RC proteins and LH2 peptides, respectively, were obtained with a propensity scale (PRC) calculated from the amino acid sequences and X-ray data for the RC proteins. A propensity scale (PLH) obtained using the amino acid sequences and X-ray data for the alphabeta-peptides of the LH2 complexes did not give an acceptable prediction of the transmembrane segments in the LH2 peptides; moreover, it markedly contradicted the PRC scale. Amino acids have been concluded to have no significant preference to localisation in transmembrane segments. Therefore, the predictive ability of the hydropathy methodology appears to be limited: the number of transmembrane segments can be correctly calculated for the best case only, and the lengths and positions of membrane-spanning alpha-helices in a protein amino acid sequence can not be predicted exactly.  相似文献   

2.
Computational modeling of the membrane channel of a sodium pump (Na,K-ATPase) is performed and the role of selected amino acids in binding of sodium ions is discussed. The channel is build as a pentameric 10-helix bundle. The transmembrane a-helices are determined from hydropathy calculations. The spatial arrangement of transmembrane a-helices is chosen according to the size of a pore, intersegment loops geometry, and orientation hydrophobicities of transmembrane segments. The latter property provides the numerical estimate of the distribution of the hydrophobic properties at the helical wheels. The model system involves the peptide part and 150 water molecules that soak the pore. The channel structure is submitted to geometry minimization and molecular dynamics relaxation. The relative stability of the channel states with the negatively charged acidic residues belonging to the pore interior decrease in the order Glu-334 > Asp-810 > Glu-785 > Asp-814. The estimated binding energies of 1-3 Na+ ions with the channel with the ionized Glu-334 and Glu-785 amino acids are in the range allowing the exothermic complexation.Electronic Supplementary Material available.  相似文献   

3.
Amphipathic helices in membrane proteins that interact with the hydrophobic/hydrophilic interface of the lipid bilayer have been difficult to structurally characterize. Here, the backbone structure and orientation of an amphipathic helix in the full-length M2 protein from influenza A virus has been characterized. The protein has been studied in hydrated DMPC/DMPG lipid bilayers above the gel to liquid-crystalline phase transition temperature by solid-state NMR spectroscopy. Characteristic PISA (Polar Index Slant Angle) wheels reflecting helical wheels have been observed in uniformly aligned bilayer preparations of both uniformly 15N labeled and amino acid specific labeled M2 samples. Hydrogen/deuterium exchange studies have shown the very slow exchange of some residues in the amphipathic helix and more rapid exchange for the transmembrane helix. These latter results clearly suggest the presence of an aqueous pore. A variation in exchange rate about the transmembrane helical axis provides additional support for this claim and suggests that motions occur about the helical axes in this tetramer to expose the entire backbone to the pore.  相似文献   

4.
Based on the principle of dual prediction by segment hydrophobicity and nonpolar phase helicity, in concert with imposed threshold values of these two parameters, we developed the automated prediction program TM Finder that can successfully locate most transmembrane (TM) segments in proteins. The program uses the results of experiments on a series of host-guest TM segment mimic peptides of prototypic sequence KK AAAXAAAAAXAAWAAXAAAKKKK-amide (where X = each of the 20 commonly occurring amino acids) through which an HPLC-derived hydropathy scale, a hydrophobicity threshold for spontaneous membrane insertion, and a nonpolar phase helical propensity scale were determined. Using these scales, the optimized prediction algorithm of TM Finder defines TM segments by first searching for competent core segments using the combination of hydrophobicity and helicity scales, and then performs a gap-joining operation, which minimizes prediction bias caused by local hydrophilic residues and/or the choice of window size. In addition, the hydrophobicity threshold requirement enables TM Finder to distinguish reliably between membrane proteins and globular proteins, thereby adding an important dimension to the program. A full web version of the TM Finder program can be accessed at http://www.bioinformatics-canada.org/TM/.  相似文献   

5.
Amphiphilic alpha-helices play a major role in membrane dependent processes and are manifested in the primary structure of a protein by the periodic appearance of hydrophobic residues. Based on these periodic sequences, the hydrophobic moment was introduced, , which essentially treats the hydrophobicity of amino acid residues as a two-dimensional vector sum and provides a measure of amphiphilicity within regular repeat structures. To identify putative amphiphilic alpha-helix forming sequences, hydrophobic moment analysis assumes an amino acid residue periodicity of 100 and scans protein primary structures to find the 11-residue window with maximal . Taken with the window's mean hydrophobicity, , hydrophobic moment plot analysis uses the coordinate pair, [, ] to classify alpha-helices as either surface active, globular or transmembrane. More recently, this latter analysis has been extended to recognize candidate oblique orientated alpha-helices. Here, the hydrophobic moment is reviewed and data to query the logic of using a fixed window length and a fixed residue angular periodicity in hydrophobic moment analysis are provided. In addition, problems associated with the use of such analysis to predict alpha-helix structure/function relationships are considered.  相似文献   

6.
The human erythrocyte facilitative glucose transporter (Glut1) is predicted to contain 12 transmembrane spanning alpha-helices based upon hydropathy plot analysis of the primary sequence. Five of these helices (3, 5, 7, 8, and 11) are capable of forming amphipathic structures. A model of GLUT1 tertiary structure has therefore been proposed in which the hydrophilic faces of several amphipathic helices are arranged to form a central aqueous channel through which glucose traverses the hydrophobic lipid bilayer. In order to test this model, we individually mutated each of the amino acid residues in transmembrane segment 7 to cysteine in an engineered GLUT1 molecule devoid of all native cysteines (C-less). Measurement of 2-deoxyglucose uptake in a Xenopus oocyte expression system revealed that nearly all of these mutants retain measurable transport activity. Over one-half of the cysteine mutants had significantly reduced specific activity relative to the C-less protein. The solvent accessibility and relative orientation of the residues within the helix was investigated by determining the sensitivity of the mutant transporters to inhibition by the sulfhydryl directed reagent p-chloromercuribenzene sulfonate (pCMBS). Cysteine replacement at six positions (Gln(282), Gln(283), Ile(287), Ala(289), Val(290), and Phe(291)), all near the exofacial side of the cell membrane, produced transporters that were inhibited by incubation with extracellular pCMBS. Residues predicted to be near the cytoplasmic side of the cell membrane were minimally affected by pCMBS. These data demonstrate that the exofacial portion of transmembrane segment 7 is accessible to the external solvent and provide evidence for the positioning of this alpha-helix within the glucose permeation pathway.  相似文献   

7.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

8.
A simple method for displaying the hydropathic character of a protein   总被引:9,自引:0,他引:9  
A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised. For this purpose, a hydropathy scale has been composed wherein the hydrophilic and hydrophobic properties of each of the 20 amino acid side-chains is taken into consideration. The scale is based on an amalgam of experimental observations derived from the literature. The program uses a moving-segment approach that continuously determines the average hydropathy within a segment of predetermined length as it advances through the sequence. The consecutive scores are plotted from the amino to the carboxy terminus. At the same time, a midpoint line is printed that corresponds to the grand average of the hydropathy of the amino acid compositions found in most of the sequenced proteins. In the case of soluble, globular proteins there is a remarkable correspondence between the interior portions of their sequence and the regions appearing on the hydrophobic side of the midpoint line, as well as the exterior portions and the regions on the hydrophilic side. The correlation was demonstrated by comparisons between the plotted values and known structures determined by crystallography. In the case of membrane-bound proteins, the portions of their sequences that are located within the lipid bilayer are also clearly delineated by large uninterrupted areas on the hydrophobic side of the midpoint line. As such, the membrane-spanning segments of these proteins can be identified by this procedure. Although the method is not unique and embodies principles that have long been appreciated, its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.  相似文献   

9.
P Jockel  M Di Berardino  P Dimroth 《Biochemistry》1999,38(41):13461-13472
The topology of the beta-subunit of the oxaloacetate Na+ pump (OadB) was probed with the alkaline phosphatase (PhoA) and beta-galactosidase (lacZ) fusion technique. Additional evidence for the topology was derived from amino acid alignments and comparative hydropathy profiles of OadB with related proteins. Consistent results were obtained for the three N-terminal and the six C-terminal membrane-spanning alpha-helices. However, the two additional helices that were predicted by hydropathy analyses between the N-terminal and C-terminal blocks did not conform with the fusion results. The analyses were therefore extended by probing the sideness of various engineered cysteine residues with the membrane-impermeant reagent 4-acetamido-4'-maleimidylstilbene-2, 2'-disulfonate. The results were in accord with those of the fusion analyses, suggesting that the protein folds within the membrane by a block of three N-terminal transmembrane segments and another one with six C-terminal transmembrane segments. The mainly hydrophobic connecting segment is predicted not to traverse the membrane fully, but to insert in an undefined manner from the periplasmic face. According to our model, the N-terminus is at the cytoplasmic face and the C-terminus is at the periplasmic face of the membrane.  相似文献   

10.
Synthetic peptides with amino acid sequences corresponding to predicted transmembrane segments of tetanus toxin were used as probes to identify a channel-forming motif. A peptide denoted TeTx II, with sequence GVVLLLEYIPEITLPVIAALSIA, forms cation-selective channels when reconstituted in planar lipid bilayers. The single channel conductance in 0.5 M NaCl or KCl is 28 +/- 3 and 24 +/- 2 pS, respectively. In contrast, a peptide with sequence NFIGALETTGVVLLLEYIPEIT, denoted as TeTx I, or a peptide with the same amino acid composition as TeTx II but with a randomized sequence, do not form channels. Conformational energy calculations show that a bundle of four amphipathic alpha-helices is a plausible structural motif underlying observable pore properties. The identified functional module may account for the channel-forming activity of both tetanus toxin and the homologous botulinum toxin A.  相似文献   

11.
KvAP is a voltage-gated tetrameric K(+) channel with six transmembrane (S1-S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218-239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel.  相似文献   

12.
Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the β-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.  相似文献   

13.
Proline-induced distortions of transmembrane helices   总被引:14,自引:0,他引:14  
Proline residues in the transmembrane (TM) alpha-helices of integral membrane proteins have long been suspected to play a key role for helix packing and signal transduction by inducing regions of helix distortion and/or dynamic flexibility (hinges). In this study we try to characterise the effect of proline on the geometric properties of TM alpha-helices. We have examined 199 transmembrane alpha-helices from polytopic membrane proteins of known structure. After examining the location of proline residues within the amino acid sequences of TM helices, we estimated the helix axes either side of a hinge and hence identified a hinge residue. This enabled us to calculate helix kink and swivel angles. The results of this analysis show that proline residues occur with a significant concentration in the centre of sequences of TM alpha-helices. In this location, they may induce formation of molecular hinges, located on average about four residues N-terminal to the proline residue. A superposition of proline-containing TM helices structures shows that the distortion induced is anisotropic and favours certain relative orientations (defined by helix kink and swivel angles) of the two helix segments.  相似文献   

14.
T J Stevens  I T Arkin 《Proteins》1999,36(1):135-143
One of the central paradigms of structural biology is that membrane proteins are "inside-out" proteins, in that they have a core of polar residues surrounded by apolar residues. This is the reverse of the characteristics found in water-soluble proteins. We have decided to test this paradigm, now that sufficient numbers of transmembrane alpha-helical structures are accessible to statistical analysis. We have analyzed the correlation between accessibility and hydrophobicity of both individual residues and complete helices. Our analyses reveal that hydrophobicity of residues in a transmembrane helical bundle does not correlate with any preferred location and that the hydrophilic vector of a helix is a poor indicator of the solvent exposed face of a helix. Neither polar nor hydrophobic residues show any bias for the exterior or the interior of a transmembrane domain. As a control, analysis of water-soluble helical bundles performed in a similar manner has yielded clear correlations between hydrophobicity and accessibility. We therefore conclude that, based on the data set used, membrane proteins as "inside-out" proteins is an unfounded notion, suggesting that packing of alpha-helices in membranes is better understood by maximization of van der Waal's forces, rather than by a general segregation of hydrophobicities driven by lipid exclusion.  相似文献   

15.
A structural model of the transmembrane portion of the acetylcholine receptor was developed from sequences of all its subunits by using transfer energy calculations to locate transmembrane alpha-helices and to calculate which helical side chains should be in contact with water inside the channel, with portions of other transmembrane helices, or with lipid hydrocarbon chains. "Knobs-into-holes" side chain packing calculations were used with other factors to stack the transmembrane alpha-helices together. In the model each subunit has the following structures in order along the sequence from the NH2 terminus: a large extracellular domain of undetermined structure, a short apolar alpha-helix that lies on the extracellular lipid surface of the membrane; three apolar transmembrane alpha-helices (I, II, and III), a cytoplasmic domain of undetermined structure, an amphipathic transmembrane alpha-helix (L) that forms the channel lining, a short extracellular alpha-helix, another apolar transmembrane alpha-helix (IV), and a small cytoplasmic domain formed by the COOH-terminal end of the chain. Three concentric layers form the pore. A bundle of five amphipathic L helices forms the channel lining. This bundle is surrounded by a bundle of 10 alternating II and III helices. Helices I and IV cover portions of the outer surface of the bundle formed by helices II and III. Positions of disulfide bridges are predicted and a mechanism for opening and closing conformational changes is proposed that requires tilting transmembrane helices and possibly a thiol-disulfide interchange reaction.  相似文献   

16.
The HERG K+ channel has very unusual kinetic behavior that includes slow activation but rapid inactivation. These features are critical for normal cardiac repolarization as well as in preventing lethal ventricular arrhythmias. Mutagenesis studies have shown that the extracellular peptide linker joining the fifth transmembrane domain to the pore helix is critical for rapid inactivation of the HERG K+ channel. This peptide linker is also considerably longer in HERG K+ channels, 40 amino acids, than in most other voltage-gated K+ channels. In this study we show that a synthetic 42-residue peptide corresponding to this linker region of the HERG K+ channel does not have defined structural elements in aqueous solution; however, it displays two well defined helical regions when in the presence of SDS micelles. The helices correspond to Trp585-Ile593 and Gly604-Tyr611 of the channel. The Trp585-Ile593 helix has distinct hydrophilic and hydrophobic surfaces. The Gly604-Tyr611 helix corresponds to an N-terminal extension of the pore helix. Electrophysiological studies of HERG currents following application of exogenous S5P peptides show that the amphipathic helix in the S5P linker interacts with the pore region of the channel in a voltage-dependent manner.  相似文献   

17.
H Aquila  T A Link    M Klingenberg 《The EMBO journal》1985,4(9):2369-2376
We report here, for the first time, the primary structure of uncoupling protein as established by amino acid sequencing. Like the ADP/ATP carrier, this protein has a tripartite structure comprising three similar sequences of approximately 100 residues each. These six 'repeats' exhibit striking conservation of several residues, in particular glycine and proline, at possible structurally strategic positions. Although the two proteins differ strongly in their amino acid composition, their sequences are distantly homologous. Three membrane-spanning alpha-helices can be deduced from hydropathy plots. A modified plot accounting for amphiphilic helices indicates 5-6 such alpha-segments. In addition an amphiphilic beta-strand of membrane-spanning length can be discerned. The tripartite sequence structure is also distinctly reflected in the hydropathy distribution. Based on the membrane disposition of the segments of the ADP/ATP carrier, a model for the transmembrane folding path of the polypeptide chain of the uncoupling protein is proposed.  相似文献   

18.
Topology and acylation of spiralin.   总被引:4,自引:2,他引:2       下载免费PDF全文
Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain.  相似文献   

19.
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.  相似文献   

20.
In this model-building study a model for the pore of the acetylcholine receptor channel is proposed. The pore is formed by five -helices of the M2 segment where three rings of hydrophilic side chains point into the channel lumen. This model is in agreement with most experimental data like photolabeling, drug affinity studies, single channel conductivity measurements and cryo electron microscopy known about this channel.This study predicts a strong coupling of the motion of the ions in the channel to that of the charged and highly hydrophilic amino acid side chains at the channel wall. Due to the negative net-charge in the pore more than a single cation may occupy the pore region. The resulting strong local electric fields make the commonly used constant field approximation obsolete for this type of ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号