首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

2.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

3.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

4.
Stereoselective, total synthesis of O-alpha-D-galactopyranosyl-(1----4) -O-beta-D-galactopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-N -tetracosanoyl-[2S,3R,4E (and 4Z)]-sphingenine and O-alpha-D -galactopyranosyl-(1----3)-O-beta-D-galactopyranosyl-(1----4)-O-beta-D -glucopyranosyl-(1----1)-N-tetracosanoyl-(2S,3R,4E)-sphin gen ine was achieved by using O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate, O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha (and beta)-D-glucopyranosyl fluoride, and O-(2,3,4,6-tetra-O-acetyl-alpha-D -galactopyranosyl)-(1----3)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyran osyl)-(1----4)-2,3,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate.  相似文献   

5.
Methyl[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosid]onat e was used for the glycosylation of benzyl O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)- and benzyl O-(2,3-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl- 2-O-pivaloyl-beta-D-glucopyranoside to give benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2-- --3)-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(21) and benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2----6) -O-(2,3-di- O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl-2-O-pivaloyl- beta-D-glucopyranoside (18), respectively, accompanied by the beta-linked isomers 22 and 19, respectively. Compounds 18, 21, and 22 were converted into the corresponding glycotriosyl donors which, upon coupling with (2S,3R,4E)-3-O-benzoyl-2-N-tetracosanoylsphingenine, afforded completely protected ganglioside analogs 39, 40, and 41, respectively. Deprotection of 40, 41, and 39 completed the synthesis of the modified ganglioside de-N-acetyl-GM3, a stereoisomer, and a regioisomer. The N-deprotected forms of 40 and 39, on successive treatment with methyl isocyanate and O-deprotection, gave the N-(N-methylcarbamoyl) analogs of GM3 and its regioisomer.  相似文献   

6.
Described are total syntheses of O-[sodium (5-acetamido-3,5-dideoxy-D -glycero-alpha-D-galacto-2-nonulopyranosyl)onate]-(2----3)-O -beta-D -galactopyranosyl-(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingen ine,O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl+ ++)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine, O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-beta-D-gal act opyranosyl -(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingenine, and O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta-D-galacto-2-nonulopyranosyl++ +)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D -galacto-2-nonulopyranosyl)onate]-(2----3)-2,3,4,6-tetra-O-a cetyl-D -galactopyrano-syl trichloroacetimidate and O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-2,4,6-tri-O-ace tyl-D-galactopyranosyl trichloroacetimidate as key glycosyl donors, and (2S,3R,4E)-3 -O-benzoyl-2-N-tetracosanoylsphingenine as a key glycosyl acceptor.  相似文献   

7.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

8.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

9.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

10.
The "armed" methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside was reacted with "disarmed" phenyl O-(tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-6-O-benzyl-2- deoxy-2-phthalimido-1-thio-beta-D-glucopyranoside in the presence of CuBr2-Bu4NBr complex to give phenyl O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-O- [(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-(1----3])-6-O-benzyl-2-deoxy -2- phthalimido-1-thio-beta-D-glucopyranoside (6) as a novel glycosyl donor. The glycosylating capability of 6 was further examined using N-iodosuccinimide-triflic acid as a reagent. This led to the synthesis of a tetrasaccharide and a pentasaccharide incorporating the X-antigenic structure represented by 6.  相似文献   

11.
O-(5-Acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2- nonulopyranoxylonic acid)-(2----6)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3) -L-serine, a structural unit occurring in various submaxillary mucins, was synthesized for the first time by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2----6)-3,4-di-O-acetyl-2- azido-2-deoxy-D- galactopyranosyl trichloroacetimidate (13) and N-(benzyloxycarbonyl)-L-serine benzyl ester as the key intermediates. The trichloroacetimidate 13 was prepared by starting from two monosaccharide synthons, namely, allyl 2-azido-2-deoxy-beta-D-galactopyranoside and methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta-D- galacto-2-nonulopyranosyl chloride)onate, which were coupled in the presence of silver triflate in tetrahydrofuran to give the desired alpha-(2----6)-linked disaccharide in moderate selectivity.  相似文献   

12.
The oligosaccharide core region, beta-D-Glcp-(1----3)-beta-D-Glcp-(1----4)-alpha-D-Glcp- 1----1)-alpha-D-Glcp (1), of the lipo-oligosaccharide-type antigens isolated from M. kansasii has been synthesised from 2,3,2',3',4',6'-hexa-O-benzyl-6-O-(1-phenylethyl)-alpha, alpha-trehalose (4). Compound 4 was obtained by LiAlH4-AlCl3-type hydrogenolysis of 2,3,2',3',4',6'-hexa-O-benzyl-4,6-O-(S)-(1-phenylethylidene)-alpha , alpha-trehalose. The beta-laminaribiosyl part of the molecule was built-up by sequential glycosylation steps using 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-glucopyranosyl bromide in the presence of HgBr2 and methyl 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranoside promoted by methyl triflate. The complete a priori 13C-n.m.r. spectrum assignment of 1 was achieved by applying 2D methods.  相似文献   

13.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

14.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

15.
The synthesis of the oligosaccharides beta-D-Xylp-(1----2)-beta-D-Manp-OMe (12), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-OMe (17), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)]-beta-D-Manp+ ++-OMe (21), and beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)] [alpha-D-Manp-(1----6)]-beta-D-Manp-OMe (25) is described. Methyl 3-O-benzyl-4,6-O-isopropylidene-beta-D-mannopyranoside (6) was prepared from the corresponding glucoepimer (4) by oxidation, followed by stereoselective reduction. Condensation of 6 with 2,3,4-tri-O-acetyl-alpha-D-xylopyranosyl bromide in the presence of mercuric cyanide gave a 1:9 mixture of methyl 3-O-benzyl-4,6-O-isopropylidene-2-O-(2,3,4- tri-O-acetyl-alpha- (7a) and -beta-D-xylopyranosyl)-beta-D-mannopyranoside (7), and then 7 was converted into the acetylated disaccharide-glycoside 11. Regioselective mannosylation, with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide, at position 6 of deisopropylidenated 7 (8), using mercuric bromide as a promoter, afforded the trisaccharide-glycoside derivative 13, which was transformed into the acetylated trisaccharide-glycoside 16. The disaccharide derivative 10, obtained from 8, and the trisaccharide derivative 15, obtained from 13, were glycosylated at position 3 with O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)trichloroacetimidate (19), using trimethylsilyl triflate as a promoter, giving rise to acetylated tri- (20) and tetra-saccharide (24) derivatives, respectively. O-Deacetylation of 11, 16, 20, and 24 gave 12, 17, 21, and 25, respectively.  相似文献   

16.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

17.
A stereocontrolled synthetic route to a glycotetraoside, allyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (3,6-di-O-allyl-2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-3, 6-di-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O- benzyl- 2-deoxy-6-O-p-methoxy-phenyl-2-phthalimido-beta-D-glucopyranoside, an important intermediate for the synthesis of "bisected" complex type glycans of glycoproteins has been established by employing two glycosyl donors, 3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate and 4-O-acetyl-3,6-di-O-allyl-2-O-benzyl-alpha-D-mannopyranosyl bromide, and a glycosyl acceptor, allyl O-(3,6-di-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1----4) -3-O- benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranoside.  相似文献   

18.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

19.
The oligosaccharides, methyl 3-O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-beta-D-ribofuranosid e, methyl 2-O-beta-D-ribofuranosyl-3-O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-beta-D-ribofuranosid e, and methyl O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----2)-O-beta-D- ribofuranosyl-(1----2)-beta-D-ribofuranoside were prepared in high purity and good over-all yields. The constitutions of the trisaccharide derivatives correspond to the repeating units of the proposed linear and branched structures of the capsular polysaccharide(s) from Escherichia coli LP 1092. The alpha-KDO-(2----3)-beta-D-Ribf and alpha-KDO-(2----2)-beta-D-Ribf units were synthesized by a modification of the Helferich procedure using methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-alpha-D-manno-2-octulopyranosyl bromide)-onate and appropriate beta-D-ribofuranosyl derivatives. The constitutional and configurational assignments were based on the 250-MHz 1H-n.m.r.-spectra of protected derivatives of the oligosaccharides.  相似文献   

20.
Methyl 3,4,6-tri-O-benzyl-beta-D-mannopyranoside (2), methyl 2,3-O-isopropylidene-beta-D-mannopyranoside (11), and 4-nitrophenyl 2,3-O-isopropylidene-beta-D-mannopyranoside (12) were each condensed with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide (1) in the presence of mercuric cyanide, to give after deprotection, methyl 2-(5) and 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (15), and 4-nitrophenyl 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (20), respectively. A similar condensation of 11 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha-D- mannopyranosyl bromide (21) and 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha D-mannopyranosyl bromide (25), followed by removal of protecting groups, afforded methyl O-alpha-D-mannopyranosyl-(1----2)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (24) and methyl O-alpha-D-mannopyranosyl-(1----6)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (28), respectively. Bromide 25 was also condensed with 12 to give a trisaccharide derivative which was deprotected to furnish 4-nitrophenyl O-alpha-D-mannopyranosyl-(1----6)-alpha-D-mannopyranosyl-(1----6)-beta-D - mannopyranoside (31). Phosphorylation of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside and 15 with diphenyl phosphorochloridate in pyridine gave the 6'-phosphates 6 and 16, respectively. Hydrogenolysis of the benzyl and phenyl groups provided methyl 2-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (7) and methyl 6-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (17) after treatment with Amberlite IR-120 (Na+) cation-exchange resin. The structures of compounds 5, 7, 15, 17, 20, 24, 28, and 31 were established by 13C-n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号