首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The promotion of perithecial initials in the imperfect fungus Monacrosporium doedycoides is enhanced by the addition of the RNA synthesis inhibitor 6-methyl purine (6-MP). The addition of two other RNA inhibitors (8-azaguanine and actinomycin-D) causes the promotion of initials but not at the magnitude observed with 6-MP. Application of a protein synthesis inhibitor (cycloheximide), a base analog (5-fluorouracil), or an amino acid analog (p-fluorophenyl-alanine) are not promotive on initial formation and can be inhibitory. The apparent cause for the promotion of perithecial initials in the imperfect fungus is that sexual structures are inhibited by mRNA's synthesized by the organism and the addition of 6-MP prohibits their synthesis.  相似文献   

2.

Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.

  相似文献   

3.
4.
High intracellular levels of heat shock proteins and enhanced protein glycosylation are two phenomena closely associated with the cellular stress response. GP50 is the major heat-induced glycoprotein in Chinese hamster ovary (CHO) cells; however, GP50 is not well characterized, and its function is unknown. J6 is a gene originally identified in F9 murine teratocarcinoma cells after exposure to retinoic acid. In this study we show that J6 is heat-inducible and codes for a protein that shares characteristics with GP50. Western blotting of CHO cell homogenates, using a J6 polyclonal antibody, showed a single band with a molecular weight identical to that of GP50. Thermotolerant cells showed increased levels of the J6/GP50 protein. Heat-shocked CHO cells also accumulated transiently high levels of J6 mRNA between 2 and 7 h following 10 rain at 45°C. These induction kinetics are similar to those for GP50 labeling with D-[3H]mannose and to the activation of major heat shock genes, e.g., hsp70. Hybrid selection of J6 mRNA from CHO cells, followed by in vitro translation, produced a single band on SDS-PAGE with a molecular weight identical to that of deglycosylated GP50. Neither cellular proliferation (exponential growth versus plateau phase) nor the specific heat shock temperature (41.5°C versus 45°C) had significant effects on J6 induction by heat stress. Stress conditions other than hyperthermia, including ethanol, arsenite, and hypoxia, increased J6 mRNA levels. Conversely, J6 mRNA was reduced by quercetin, brefeldin A, okadaic acid, uv, and hydrogen peroxide. Our data support the hypothesis that J6 is a heat shock gene with a gene product identical to the polypeptide moiety of GP50.  相似文献   

5.
Summary The response to stresses produced by changes in the fermentation conditions ofClostridium acetobutylicum in continuous culture was determined under acid- and solvent-producing conditions. Using a phosphate-limited chemostat it was found that specificheatshockproteins (hsp 73, hsp 72 [Dnak], hsp 67 [GroEL], hsp 17 and hsp 14) were synthesized at elevated levels during the shift from acid to solvent formation. The induction of these stress proteins was observed before acetone and butanol were detected in the medium and was therefore not a response to these solvents present in the medium. Simultaneously with the induction of hsps, changes in the synthesis rates of other cellular proteins were observed. Synthesis of proteins associated with the acid production phase decreased and of proteins correlated with the solvent production phase increased. Some hsps, including the DnaK- and GroEL-similar proteins, hsp 73 and hsp 21, were also induced by a change in the growth rate and/or the pH. The analysis of the general regulation of the heat shock response inC. acetobutylicum revealed that the induction of at least 15 hsps after a temperature up-shift was transient and that two temporal classes of hsps could be distinguished. The synthesis of one group of hsps reached a maximum after 6 min and another around 11 min after the temperature upshift and returned to steady-state levels 30 to 40 min after the shock.  相似文献   

6.
In an attempt to clarify the function of l-aspartic acid and culture conditions in aspartate ammonia lyase induction, experiments were carried out on aspartase formation in Bacillus cereus cells. The enzyme was produced by microorganisms in response to l-aspartic acid, which is catabolized by direct deamination to fumarate. Enzyme synthesis by B. cereus was associated with physiological growth stages, which was confirmed by use of the protein synthesis inhibitor, chloramphenicol, whereas it did not influence synthesis when it was added directly to the reactor batch containing a biotransformation system. Aspartase activity was evaluated in a batch reactor by biotransformation of fumaric acid into l-aspartic acid catalyzed by whole B. cereus cells. The culture medium for the strain was optimized, which increased the initial aspartase activity threefold. B. cereus cells showed optimal aspartase activity at late log phase. Journal of Industrial Microbiology & Biotechnology (2000) 25, 225–228. Received 02 December 1999/ Accepted in revised form 09 August 2000  相似文献   

7.
The mechanisms of action of 9-(tetrahydro-2-furyl)-6-mercaptopurine (THFMP) have been studied in Chinese hamster ovary (CHO) cells in tissue culture. THFMP is relatively unstable in physiological buffers, being facilely converted to 6-mercaptopurine (6-MP) even in the absence of cells. Consequently, THFMP undergoes metabolic conversions characteristic of 6-MP, namely formation of 6-thioIMP and incorporation into DNA as 6-thioguanine (6-TG) nucleotide. A number of purines are capable of preventing the toxicity of THFMP in wild-type cells in a manner similar to that of 6-MP. However, exogenous purines and pyrimidines did not prevent the toxicity of THFMP to cells deficient in the enzyme, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8; HGPRTase). Cells lacking HGPRTase were 20–40-fold resistant to 6-TG and 6-MP but were only 2–4-fold resistant to THFMP. Furthermore, the time-course for killing CHO cells deficient in HGPRTase was different from that in wild-type cells containing the enzyme. There was no apparent effect of THFMP on the utilization of precursors for DNA, RNA or protein synthesis in the enzyme-deficient mutant cell line. The results suggest that THFMP is converted non-enzymatically to 6-MP and shares its mechanisms of action in wild-type cells containing HGPRTase, i.e., inhibition of de novo purine biosynthesis and incorporation into DNA as 6-TG nucleotide. However, the mechanism of action of THFMP in cells lacking HGPRTase is probably unique and is presently unknown.  相似文献   

8.
After elicitation, cell suspension cultures of Catharanthus roseus accumulate phenolic compounds. The major phenolic compound produced was isolated and identified as 2,3-dihydroxybenzoic acid (DHBA). The accumulation of this compound is a rapid response to the addition of elicitor; within 6 h after the addition of elicitor, DHBA concentration reached 6.3 mg/l cell suspension. DHBA was not detected in non-elicited cells. The formation of DHBA in elicited cells was correlated with the induction of the enzyme isochorismate synthase (ICS). Shoot cultures of C. roseus also presented a strong induction of ICS after elicitation. Due to its biological activity, DHBA could play a role in the defence mechanism of C. roseus.  相似文献   

9.
Previous results from this laboratory demonstrated that treatment of mice with the adenosine analog tubercidin (Tub) reduced natural killer (NK) cell activity while stimulating antibody production whereas the deoxyadenosine analog, 2-fluoroadenine arabinoside-5'-monophosphate (FaraAMP), produced opposite effects; i.e., it stimulated NK cell activity at doses that inhibited antibody formation (Cancer Res. 48, 4799, 1988). Since NK cells have been reported to play a suppressor role in immunoglobulin induction, it was hypothesized that the actions of Tub and FaraAMP on antibody production occurred secondary to their opposing effects on NK cells. To test this hypothesis, abilities of these nucleoside analogs to modulate primary antibody response to sheep red blood cells were evaluated in a C57BL/6 mutant mouse lacking NK cell activity (the beige mutation. C57BL/6-bg/bg). As previously found with C3H/He mice. NK cell activity was inhibited (Tub, doses 2-6 mg/kg/day for 3 days) or stimulated (FaraAMP, doses 75-250 mg/kg/day for 3 days) in heterozygous mice C57BL/6-bg/+. In support of the hypothesis, these nucleosides had no effect on primary antibody formation in the homozygous mutant mice at doses that clearly stimulated (Tub) or inhibited (FaraAMP) this immune response in heterozygous C57BL/6-bg/+ animals. This results was corroborated in C57BL/6 wild-type mice by abrogation of NK cell activity using a monoclonal antibody to the NK cell surface glycophisingolipid, ganglio-n-tetraosylceramide. We conclude that under the conditions of drug administration, modulation of primary antibody formation by Tub and FaraAMP in mice occurs indirectly via NK cells. Similar experiments using the potent ADA inhibitor, deoxycoformycin, indicated that its enhancement of primary antibody formation is independent of NK cell activity.  相似文献   

10.
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of –46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X–H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent’s rule is verified for the C–H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (?2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.  相似文献   

11.
We investigated the intracellular physiological conditions associated with the induction of butanol-producing enzymes in Clostridium acetobutylicum. During the acidogenic phase of growth, the internal pH decreased in parallel with the decrease in the external pH, but the internal pH did not go below 5.5 throughout batch growth. Butanol was found to dissipate the proton motive force of fermenting C. acetobutylicum cells by decreasing the transmembrane pH gradient, whereas the membrane potential was affected only slightly. In growing cells, the switch from acid to solvent production occurred when the internal undissociated butyric acid concentration reached 13 mM and the total intracellular undissociated acid concentration (acetic plus butyric acids) was at least 40 to 45 mM. Similar values were obtained when cultures were supplemented with 50 mM butyric acid initially or when a phosphate-buffered medium was used instead of an acetate-buffered medium. To measure the induction of the enzymes involved in solvent synthesis, we determined the rates of conversion of butyrate to butanol in growing cells. The rate of butanol formation reached a maximum in the mid-solvent phase, when the butanol concentration was 50 mM. Although more solvent accumulated later, de novo enzyme synthesis decreased and then ceased.  相似文献   

12.
Alterations in cell cycle regulation underlie the unrestricted growth of neoplastic astrocytes. Chemotherapeutic interventions of gliomas have poor prognostic outcomes due to drug resistance and drug toxicity. Here, we examined the in vitro growth kinetics of C6 glioma (C6G) cells and primary astrocytes and their responses to 2 phase-specific inhibitors, lovastatin and hydroxyurea. C6G cells demonstrated a shorter G1 phase and an earlier peak of DNA synthesis in S phase than primary astrocytes. As C6G cells and primary astrocytes re-entered the cell cycle in the presence of lovastatin or hydroxyurea, they exhibited different sensitivities to the inhibitory effects of these agents, as measured by [3H]-thymidine incorporation. Compared to primary astrocytes, C6G cells were more sensitive to lovastatin, but less sensitive to hydroxyurea. Studies using 2 different paradigms of exposure uncovered dramatic differences in the kinetics of DNA synthesis inhibition by these 2 agents in C6G cells and primary astrocytes. One notable difference was the ability of C6G cells to more easily recover from the inhibitory effects of hydroxyurea following short exposure. Our results provide insight into C6 glioma drug resistance as well as the inhibitory effects of these 2 phase-specific inhibitors and their chemotherapeutic potential.  相似文献   

13.
The effect of the anticancer drug 6-mercaptopurine (6-MP) on mineral metabolism was investigated in mice. C57Bl/6J female mice were injected intraperitoneally with 6-MP at 100 mg/kg body wt for one, two, four, or five consecutive days. On d 6 of the study, liver, kidney, and intestine were removed, and concentrations of zinc, copper, iron, manganese, magnesium, and calcium were measured. Hepatic concentrations of zinc, copper, iron, and calcium became higher as the number of drug injections increased. To determine if the altered mineral metabolism was a function of a drug-induced, acute-phase response, liver metallothionein and plasma ceruloplasmin were measured. Metallothionein concentrations in the liver became higher with increased number of injections, correlating with the stepwise increase in hepatic zinc. Gel filtration chromatography showed that most of the increase in liver zinc concentration was associated with a protein of mol wt of 6000–8000, the approximate weight of metallothionein. Ceruloplasmin concentrations were not affected by 6-MP injection. These results suggested that 6-MP alters zinc metabolism by sequestering zinc into the liver via induction of metallothionein synthesis and that the drug may induce an acute-phase response with an atypical acute-phase protein profile.  相似文献   

14.
A simple procedure for induction of competence in nonencapsulated and encapsulated strains ofHaemophilus influenzae is described, which consists of growing cells without shaking in brain-heart infusion broth under aerobic conditions. Competence emerged at the end of the exponential phase and reached a peak at the stationary phase. InH. influenzae Rd competence was maintained for at least 6 h at 37°C, whereas in two encapsulated clinical isolates ofH. influenzae type b a decrease in competence was observed after 4 h. Competence was maintained for 24 h at 22°C and 4°C as well as by freezing the cells in 15% glycerol and storing them at –70°C. Transformation frequencies of three chromosomal markers—streptomycin, nalidixic acid, and erythromycin resistance—were 0.5% to 1% inH. influenzae Rd and about tenfold lower in the two encapsulated clinical isolates ofH. influenzae type b. The advantage of this procedure is that it is simpler than the previously described procedures and yields stable, highly transformable cells. Unlike the standard M IV method, the static aerobic procedure does not interfere with the capsule synthesis and can be used for testing transforming activity of encapsulated virulent isolates ofH. influenzae.  相似文献   

15.
The chemical and immunological properties of the cell walls prepared from the cells of anaerobic coryneforms, Propionibacterium acnes C7 and Corynebacterium parvum ATCC 11829, were partially investigated. The cell walls prepared from P. acnes C7 and C. parvum ATCC 11829 were composed of fatty acids, polysaccharides consisting glucose, galactose and mannose and mucopeptides consisting mainly of alanine, glutamic acid, a, ε-diaminopimelic acid, glycine, muramic acid and glucosamine. As the fatty acid constituents of the cell wall of P. acnes C7, iso-pentadecanoic acid and iso-heptadecanoic acid were detected as major components. Both cell walls prepared from P. acnes C7 and C. parvum ATCC 11829 showed potent adjuvant activity on the formation of circulating antibody and development of delayed type hypersensitivity in vivo and on the primary immune response to sheep erythrocytes in vitro, however, could not augment helper function of carrier-primed T cells and on the development of cell-mediated cytotoxicity to mastocytoma P815-X2 cells in C57BL/6J mice. It is also shown that the cell walls of P. acnes C7 and C. parvum ATCC 11829 act on mouse spleen cells as mitogen.  相似文献   

16.
The role of diacylglycerol (DAG) in hormonal induction of S phase was investigated in primary cultures of rat hepatocytes. In this model, several agonists that bind to G protein-coupled receptors act as comitogens when added to the cells soon after plating (i.e., in Go/early Gl phase), while the cells are most responsive to the mitogenic effect of epidermal growth factor (EGF) at 24–48 h of culturing (i.e., mid/late Gl). It was found that the cellular concentration of DAG rose markedly and progressively during the first 24 h of culturing. Exposure of the hepatocytes at 3 h to αl-adrenergic stimulation (norepinephrine with timolol), vasopressin, or angiotensin II further increased this rise, producing a sustained increase in the DAG level. Norepinephrine, which was the most efficient comitogen, produced the most prolonged DAG elevation. In contrast, no significant increase of DAG was found in response to EGF, neither at 3 nor at 24 h, using concentrations that markedly stimulated the ERK subgroup of the mitogen-activated protein kinases (MAPK) and DNA synthesis. Addition of Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLC) strongly elevated DAG, while Streptomyces phospholipase D (PLD) increased phosphatidic acid (PA) but not DAG. B. cereus PC-PLC and the protein kinase C (PKC) activator tetradecanoyl phorbol-acetate (TPA), like norepinephrine, vasopressin, and angiotensin II, stimulated MAPK and enhanced the stimulatory effect of EGF on DNA synthesis. The PKC inhibitor GF109203X did not diminish the effect of EGF on MAPK or DNA synthesis, but strongly inhibited the effects of norepinephrine, vasopressin, angiotensin II, TPA and B. cereus PC-PLC on MAPK and almost abolished the enhancement by these agents of EGF-stimulated DNA synthesis. These results suggest that although generation of DAG is not a direct downstream response mediating the effects of the EGF receptor in hepatocytes, a sustained elevation of DAG with activation of PKC markedly increases the responsiveness to EGF. Mechanisms involving DAG and PKC seem to play a role in the comitogenic effects of various agents that bind to G protein-coupled receptors and activate the cells early in Gl, such as norepinephrine, angiotensin II, and vasopressin. J. Cell. Physiol. 180:203–214, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

17.

Background

Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown.

Methods

Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus.

Results

6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP.

Conclusions

Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0236-0) contains supplementary material, which is available to authorized users.  相似文献   

18.
3-Mercaptopyruvate sulfurtransferase (E.C. 2.8.1.2; MST) is an enzyme believed to function in the endogenous cyanide (CN) detoxification system because it is capable of transferring sulfur from 3-mercaptopyruvate (3-MP) to CN, forming the less toxic thiocyanate (SCN). To date, 3-MP is the only known sulfur-donor substrate for MST. In an effort to increase the understanding of what chemical properties of 3-MP affect its utilization as a substrate, in vitro enzyme kinetic studies of MST were conducted using two mercaptic acids that are structurally related to 3-MP. Neither of these compounds was able to serve as a sulfur-donor substrate for MST. Inhibitor studies determined that 3-mercaptopropionic acid did not affect the Km of MST for 3-MP but did decrease Vmax and, thus, was determined to be a noncompetitive inhibitor. Alternatively, 2-mercaptopropionic acid 2-MPA decreased Km and Vmax and was determined to be an uncompetitive inhibitor of MST with respect to 3-MP. These data indicate that the α-keto group of 3-MP is necessary for its utilization as a substrate, and the inhibitor studies suggest that the position of the sulfur may also affect the binding of these compounds to the enzyme. These observations increase the understanding of what factors can affect the utilization of a compound as a sulfur-donor substrate for MST and may aid in the development of alternative sulfur-donor substrates for MST. © 1996 John Wiley & Sons, Inc.  相似文献   

19.

Background

The introduction of drug-eluting stents (DES) has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP) has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC), endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface.

Methods

Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 μg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions.

Results

Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation.

Conclusion

We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6-MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient.  相似文献   

20.
The mechanism of suppression of humoral immune response to dinitrophenylated bovine gamma globulin (DNP23-BGG), human serum albumin (HSA), and trinitrophenylated sheep red blood cells (TNP-SRBC) by 6-mercaptopurine (6-MP) was studied in guinea pigs. Following the intradermal application of the antigens emulsified in complete (CFA) or incomplete Freund's adjuvant (IFA) each test animal was given 6-MP, 10 mg/kg/day for 7 days. This treatment resulted in a significant suppression of the anti BGG and anti SRBC agglutinating and complement binding antibody production. The latter was only significantly suppressed if the TNP-SRBC were applied together with CFA and not if TNP-SRBC were given in IFA. The anti DNP and anti HSA antibody formation was not influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号