首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
2.
Sox2 is expressed at high levels in neuroepithelial stem cells and persists in neural stem/progenitor cells throughout adulthood. We showed previously that the Sox2 regulatory region 2 (SRR2) drives strong expression in these cells. Here we generated transgenic mouse strains with the beta-geo reporter gene under the control of the SRR2 in order to examine the spatiotemporal function of this regulatory region. We show that the SRR2 functions specifically in neural stem/progenitor cells. However, unlike Nestin 2nd intronic enhancer, the SRR2 shows strong regional specificity functioning only in restricted areas of the telencephalon but not in any other portions of the central nervous system such as the spinal cord. We also show by in vitro clonogenic assay that at least some of these SRR2-functioning cells possess the hallmark properties of neural stem cells. In adult brains, we could detect strong beta-geo expression in the subventricular zone of the lateral ventricle and along the rostral migrating stream where actively dividing cells reside. Chromatin immunoprecipitation assays reveal interactions of POU and Sox factors with SRR2 in neural stem/progenitor cells. Our data also suggest that the specific recruitment of these proteins to the SRR2 in the telencephalon defines the spatiotemporal activity of the enhancer in the developing nervous system.  相似文献   

3.
4.
5.
6.
7.
The Netrin/RGMa receptor, Neogenin, has recently been identified on neuronal and gliogenic progenitors, including radial glia in the embryonic mouse cortex and ganglionic eminences, respectively [Fitzgerald, D.P., Cole, S.J., Hammond, A., Seaman, C., Cooper, H.M., 2006a. Characterization of Neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain. Neuroscience 142, 703-716]. Here we have undertaken a detailed analysis of Neogenin expression in the embryonic mouse central nervous system at key developmental time points. We demonstrate that Neogenin protein is present on actively dividing neurogenic precursors during peak phases of neurogenesis (embryonic days 12.5-14.5) in the forebrain, midbrain and hindbrain. Furthermore, we show that Neogenin protein is localized to the cell bodies and glial processes of neurogenic radial glial populations in all these regions. We have also observed Neogenin on gliogenic precursors within the subventricular zones of the forebrain late in development (embryonic day 17.5). Adult neural stem cells found in the subventricular zone of the lateral ventricle of the rodent forebrain are direct descendants of the embryonic striatal radial glial population. Here we show that Neogenin expression is maintained in the neural stem cell population of the adult mouse forebrain. In summary, this study demonstrates that Neogenin expression is a hallmark of many neural precursor populations (neurogenic and gliogenic) in both the embryonic and adult mammalian central nervous system.  相似文献   

8.
big brain (bib) is one of the six known zygotic neurogenic genes involved in the decision of an ectodermal cell to take on the neurogenic or the epidermogenic cell fate. Previous studies suggest that bib functions in a pathway separate from the one involving Notch and other known neurogenic genes. For a better understanding of the bib function, it is essential first to characterize the mutant phenotype in detail. Our mutant analyses show that loss of bib function approximately doubles the number of neuronal precursors and their progeny cells in the embryonic peripheral nervous system. Mosaic studies reveal a hypertrophy of sensory bristles in bib mutant patches in adult flies. Our observations are compatible with a function of bib in specifying neuronal precursors of both the embryonic and adult sensory nervous system. This is in contrast to the function of Notch, which continues to be required at multiple stages of neural development subsequent to this initial determination event.  相似文献   

9.
10.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
BACKGROUND: Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS: We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS: Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.  相似文献   

20.
The heart is divided into four chambers by membranous septa and valves. Although evidence suggests that formation of the membranous septa requires migration of neural crest cells into the developing heart, the functional significance of these neural crest cells in the development of the endocardial cushion, an embryonic tissue that gives rise to the membranous appendages, is largely unknown. Mice defective in the protease region of Meltrin beta/ADAM19 show ventricular septal defects and defects in valve formation. In this study, by expressing Meltrin beta in either endothelial or neural crest cell lineages, we showed that Meltrin beta expressed in neural crest cells but not in endothelial cells was required for formation of the ventricular septum and valves. Although Meltrin beta-deficient neural crest cells migrated into the heart normally, they could not properly fuse the right and left ridges of the cushion tissues in the proximal outflow tract (OT), and this led to defects in the assembly of the OT and AV cushions forming the ventricular septum. These results genetically demonstrated a critical role of cardiac neural crest cells expressing Meltrin beta in triggering fusion of the proximal OT cushions and in formation of the ventricular septum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号