共查询到20条相似文献,搜索用时 15 毫秒
1.
Gu X 《Genetics》2007,175(4):1813-1822
In this article, we develop an evolutionary model for protein sequence evolution. Gene pleiotropy is characterized by K distinct but correlated components (molecular phenotypes) that affect the organismal fitness. These K molecular phenotypes are under stabilizing selection with microadaptation (SM) due to random optima shifts, the SM model. Random coding mutations generate a correlated distribution of K molecular phenotypes. Under this SM model, we further develop a statistical method to estimate the "effective" number of molecular phenotypes (K(e)) of the gene. Therefore, for the first time we can empirically evaluate gene pleiotropy from the protein sequence analysis. Case studies of vertebrate proteins indicate that K(e) is typically approximately 6-9. We demonstrate that the newly developed SM model of protein evolution may provide a basis for exploring genomic evolution and correlations. 相似文献
2.
Genome and protein evolution in eukaryotes 总被引:1,自引:0,他引:1
The past year has seen the completion of the genome sequence of the flowering plant Arabidopsis thaliana and the initial sequence reports of the human genome. The availability of completely sequenced eukaryotic genomes from disparate phylogenetic lineages has opened the door to comparative analyses and a better understanding of the evolutionary processes shaping genomes. Complex many-to-many relationships between genes from different species appear to be the norm, suggesting that transfer of detailed functional annotation will not be straightforward. In addition to expansion and contraction of gene families, new genes evolve from recombination of pre-existing domains, although some domain families do appear to have evolved recently and to be specific to restricted phylogenetic lineages. The overall picture is of a huge diversity of gene content within eukaryotic genomes, reflecting different functional demands in different species. 相似文献
3.
4.
The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not produced conclusive results. In particular, previous studies have not found the expected negative correlation between evolutionary rate and gene pleiotropy. Here, we studied the effect of gene pleiotropy and the phenotypic size of mutations on the evolutionary rate of genes in a geometrical model, in which gene pleiotropy was characterized by n molecular phenotypes that affect organismal fitness. For a nearly neutral process, we found a negative relationship between evolutionary rate and mutation size but pleiotropy did not affect the evolutionary rate. Further, for a selection model, where most of the substitutions were fixed by natural selection in a randomly fluctuating environment, we also found a negative relationship between evolutionary rate and mutation size, but interestingly, gene pleiotropy increased the evolutionary rate as √n. These findings may explain part of the disagreement between empirical data and traditional expectations. 相似文献
5.
Studies of microbial eukaryotes have been pivotal in the discovery of biological phenomena, including RNA editing, self-splicing RNA, and telomere addition. Here we extend this list by demonstrating that genome architecture, namely the extensive processing of somatic (macronuclear) genomes in some ciliate lineages, is associated with elevated rates of protein evolution. Using newly developed likelihood-based procedures for studying molecular evolution, we investigate 6 genes to compare 1) ciliate protein evolution to that of 3 other clades of eukaryotes (plants, animals, and fungi) and 2) protein evolution in ciliates with extensively processed macronuclear genomes to that of other ciliate lineages. In 5 of the 6 genes, ciliates are estimated to have a higher ratio of nonsynonymous/synonymous substitution rates, consistent with an increase in the rate of protein diversification in ciliates relative to other eukaryotes. Even more striking, there is a significant effect of genome architecture within ciliates as the most divergent proteins are consistently found in those lineages with the most highly processed macronuclear genomes. We propose a model whereby genome architecture-specifically chromosomal processing, amitosis within macronuclei, and epigenetics-allows ciliates to explore protein space in a novel manner. Further, we predict that examination of diverse eukaryotes will reveal additional evidence of the impact of genome architecture on molecular evolution. 相似文献
6.
7.
8.
9.
Promislow DE 《Proceedings. Biological sciences / The Royal Society》2004,271(1545):1225-1234
The number of interactions, or connectivity, among proteins in the yeast protein interaction network follows a power law. I compare patterns of connectivity for subsets of yeast proteins associated with senescence and with five other traits. I find that proteins associated with ageing have significantly higher connectivity than expected by chance, a pattern not seen for most other datasets. The pattern holds even when controlling for other factors also associated with connectivity, such as localization of protein expression within the cell. I suggest that these observations are consistent with the antagonistic pleiotropy theory for the evolution of senescence. In further support of this argument, I find that a protein's connectivity is positively correlated with the number of traits it influences or its degree of pleiotropy, and further show that the average degree of pleiotropy is greatest for proteins associated with senescence. I explain these results with a simple mathematical model combining assumptions of the antagonistic pleiotropy theory for the evolution of senescence with data on network topology. These findings integrate molecular and evolutionary models of senescence, and should aid in the search for new ageing genes. 相似文献
10.
Michael R. Rose 《Theoretical population biology》1985,28(3):342-358
Previous results found for selection with antagonistic pleiotropy and discrete generations are extended to cases with overlapping generations. In order to do so, protected polymorphism conditions are found for monoecious and dioecious populations when the intrinsic rate of increase, or Malthusian parameter, is not too large in magnitude. Under such conditions, it is shown that recessive deleterious gene effects foster the maintenance of allelic variants affecting life history. The significance of this result for experimental studies of the evolution of senescence is addressed. 相似文献
11.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. 相似文献
12.
13.
Genome evolution in polyploids 总被引:71,自引:0,他引:71
Wendel JF 《Plant molecular biology》2000,42(1):225-249
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation. 相似文献
14.
Examination of data on genome size for prokaryotic cells suggests an evolutionary scheme. 相似文献
15.
16.
Genome size and evolution 总被引:14,自引:0,他引:14
17.
18.
19.
In this issue of Molecular Ecology, Kent et al. (2011) describe the adaptive evolution of honey bee vitellogenin that belongs to a phylogenetically conserved group of egg yolk precursors. This glyco‐lipoprotein leads a double life: it is central to egg production in the reproductive queen caste, and a regulator of social behaviour in the sterile worker caste. Does such social pleiotropy constrain molecular evolution? To the contrary; Kent et al. show that the vitellogenin gene is under strong positive selection in honey bees. Rapid change has taken place in specific protein regions, shedding light on the evolution of novel vitellogenin functions. 相似文献
20.
Adaptive protein evolution of X-linked and autosomal genes in Drosophila: implications for faster-X hypotheses 总被引:1,自引:0,他引:1
Connallon T 《Molecular biology and evolution》2007,24(11):2566-2572
Patterns of sex chromosome and autosome evolution can be used to elucidate the underlying genetic basis of adaptative change. Evolutionary theory predicts that X-linked genes will adapt more rapidly than autosomes if adaptation is limited by the availability of beneficial mutations and if such mutations are recessive. In Drosophila, rates of molecular divergence between species appear to be equivalent between autosomes and the X chromosome. However, molecular divergence contrasts are difficult to interpret because they reflect a composite of adaptive and nonadaptive substitutions between species. Predictions based on faster-X theory also assume that selection is equally effective on the X and autosomes; this might not be true because the effective population sizes of X-linked and autosomal genes systematically differ. Here, population genetic and divergence data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba are used to estimate the proportion of adaptive amino acid substitutions occurring in the D. melanogaster lineage. After gene composition and effective population size differences between chromosomes are controlled, X-linked and autosomal genes are shown to have equivalent rates of adaptive divergence with approximately 30% of amino acid substitutions driven by positive selection. The results suggest that adaptation is either unconstrained by a lack of beneficial genetic variation or that beneficial mutations are not recessive and are thus highly visible to natural selection whether on sex chromosomes or on autosomes. 相似文献