首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that transpiration and photosynthetic rates generally increase in resprouting shoots after fire in chaparral shrublands. By contrast, little is known about how plant hydraulic function varies during this same recovery period. We hypothesized that vascular traits, both functional and structural, would also shift in order to support this heightened level of gas exchange and growth. We examined stem xylem‐specific hydraulic conductivity (Ks) and resistance to cavitation (P50) for eight chaparral shrub species as well as several potential xylem structural determinants of hydraulic function and compared established unburned plants and co‐occurring post‐fire resprouting plants. Unburned plants were generally more resistant to cavitation than resprouting plants, but the two groups did not differ in Ks. Resprouting plants had altered vessel structure compared with unburned plants, with resprouting plants having both wider diameter vessels and higher inter‐vessel pit density. For biomechanics, unburned plants had both stronger and denser stem xylem tissue than resprouting plants. Shifts in hydraulic structure and function resulted in resprouting plants being more vulnerable to dehydration. The interaction between time since disturbance (i.e. resprouting versus established stands) and drought may complicate attempts to predict mortality risk of resprouting plants.  相似文献   

2.
Resprouting is an efficient life history strategy by which woody savanna species can recover their aboveground biomass after fire. However, resprouting dynamics after fire and the time it takes to start producing flowers and fruits are still poorly understood, especially for the Brazilian savanna (Cerrado biome), where fire is an important driver of vegetation structure and ecosystem functioning. We investigated the resprouting dynamics and production of flowers and fruits of 26 woody species (20 tree and 6 shrub species for a total of 485 individuals) that were burned and the production of flowers and fruits for a subset of 12 species (139 individuals) in an unburned area in a Brazilian savanna. We classified the species’ resprouting strategies as hypogeal (at the soil level, with main stem death), epigeal (on the main stem or crown), and hypogeal + epigeal. We used generalized linear mixed-effect models to identify the post-fire recovery patterns for five years. Individuals with basal resprouts (hypogeal and hypogeal + epigeal resprouting) produced an average of 6 basal resprouts, but only 33% of resprouts survived after five years. Individuals in burned areas produced fewer flowers and fruits than individuals in unburned areas. At least a subset of individuals in all the resprouting strategies started to produce flowers and fruits in the first-year post-fire. About 68% of the species with hypogeal resprouts produced flowers and fruits in the first-year post-fire, but the intensity of flowering and fruiting was lower compared to individuals with other resprouting strategies over time. Although woody species have invested in post-fire growth and sexual reproduction in all resprouting strategies, the long time needed to recover these processes can make these species more vulnerable to frequent fires.  相似文献   

3.
Resprouting can be an important means of regeneration for forest tree species resulting in multi-stemmed architecture, especially at less productive or frequently disturbed sites. However, the cost of resprouting may be traded off against growth or reproduction. In subtropical coastal forest in South Africa, trees grow on steep, sandy dunes with unstable soils and low to moderate nutrient availability. These coastal forests experience seasonally strong anticyclonic winds from August through October. We examined the hypothesis that basal resprouting resulting in multiple stems causes lower rates of sexual reproduction and recruitment by individuals. We examined whether trees traded off resprouting against seed output, seed size, seedling abundance and recruitment by seedlings. Species were designated as good and poor resprouters based on their frequency of multi-stemmed individuals at Cape Vidal. Good resprouters had more stems, produced less seed and had lower seed mass than poor resprouters, and had lower seedling abundance and fewer individuals in small diameter classes than large diameter classes. Seedling abundance in good resprouters was not influenced by the availability of understorey gaps. Good resprouters were most abundant on dune crests and seaward slopes that were exposed to sea winds. Persistence of established individuals by producing multiple stems from basal resprouts is important where a chronic disturbance regime potentially reduces the survivorship of single-stemmed individuals and thereby their opportunities for reproduction. Good resprouters appear to trade-off recruitment of new individuals for multiple stems that increase the persistence of established ones against disturbance. We conclude that multi-stemming arising from basal resprouts has evolved to promote individual persistence under low to moderate intensity but pervasive wind stress.  相似文献   

4.
Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between xylem mechanical strength (xylem density and modulus of rupture) and xylem transport safety (resistance to cavitation and estimated vessel implosion resistance), and this was supported by PICs. Like stems, greater root cavitation resistance was correlated with greater vessel implosion resistance; however, unlike stems, root cavitation resistance was not correlated with xylem density and modulus of rupture. Also different from stems, roots displayed a trade-off between xylem transport safety from cavitation and xylem transport efficiency. Both stems and roots showed a trade-off between xylem transport safety and xylem storage of water and nutrients, respectively. Stems and roots differ in xylem structural and functional relationships, associated with differences in their local environment (air vs soil) and their primary functions.  相似文献   

5.
Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.  相似文献   

6.
Fire and windstorms can cause severe disturbance, but their consequences for trees may differ. Resprouting enables persistence through frequent and severe disturbance. To explore responses to an abnormal disturbance and evolutionary hypotheses about resprouting as an adaptation, we analysed patterns of resprouting in four taxa following a tornado in a tropical savanna (Kakadu National Park, northern Australia) that is frequently burnt but is rarely subject to severe windthrow. Resprouting (i.e. survival) rates varied markedly among taxa and damage types, from 35% in uprooted Acacia spp. (Mimosaceae) to over 90% in eucalypts (Myrtaceae) and Erythrophleum chlorostachys (Caesalpiniaceae) with persistent tertiary branches. Most resprouting was from the epicormic strand‐bank on the stem or branches. Across all taxa, greater architectural damage reduced resprouting rates. Damage was magnified by proximity to the centre of the tornado path, suggesting an additional effect of internal damage. Smaller trees, trees whose trunks were snapped below 2 m, and those closer to the tornado path were more likely to resprout basally or from the roots rather than epicormically, although in Acacia spp. these resprouting modes were positively correlated. We hypothesize that trees of fire‐prone savannas have evolved to grow rapidly out of the flame zone; this was supported by more detailed analyses of Eucalyptus tetrodonta suggesting that resprouts emerging nearer the ground grow faster. Resprouting at ground level may be a bet‐hedging strategy to spread the risk of mortality among multiple stems when elevated sprouting was not possible. We conclude that the adaptation of eucalypts to frequent fire does not jeopardize their survival (by comparison with the more generalist Acacia spp.) following severe windthrow, providing an example of ‘exaptation’ rather than trade‐off in fitness under contrasting stressors.  相似文献   

7.
The stems of large trees serve in transport, storage, and support; however, the degree to which these roles are reflected in their morphology is not always apparent. The large, water-filled stems of baobab trees (Adansonia spp.) are generally assumed to serve a water storage function, yet recent studies indicate limited use of stored water. Through an analysis of wood structure and composition, we examined whether baobab morphology reflects biomechanical constraints rather than water storage capacity in the six Madagascar baobab species. Baobab wood has a high water content (up to 79%), low wood density (0.09-0.17 g · cm(-3)), high parenchyma content (69-88%), and living cells beyond 35 cm into the xylem from the cambium. Volumetric construction cost of the wood is several times lower than in more typical trees, and the elastic modulus approaches that of parenchyma tissue. Safety factors calculated from estimated elastic buckling heights were low, indicating that baobabs are not more overbuilt than other temperate and tropical trees, yet the energy investment in stem material is comparable to that in temperate deciduous trees. Furthermore, the elastic modulus of the wood decreases with water content, such that excessive water withdrawal from the stem could affect mechanical stability.  相似文献   

8.
Abstract. The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.  相似文献   

9.
Secondary woodlands in South Korea cover most mountains from low to middle elevations. While general patterns of forest succession are well understood, little is known about mechanisms of stand recovery after disturbance. We examined the spatio-temporal variations in establishment, growth, size inequality, and mode of competition among trees in a 50-year-old post-logging Quercus mongolica-dominated stand. We further compared the growth and stem allometry of single trees, presumably of seed origin, with multi-stemmed trees resprouting from stumps. Q. mongolica formed the upper canopy 16–22 m tall, 88.3% of total stand basal area, and 36.2% of total stem density, with most trees established during the first post-logging decade (51.2% were resprouts). During the first three decades, the Q. mongolica recruits grew exponentially, and disproportionately more in diameter than few older reserved trees left after the last cutting. This substantially decreased size inequality. The reverse trend was observed from 1994 to 2004: larger trees grow more, indicating an increasing asymmetry of competition for light. Neighborhood analysis revealed that when target trees had more or larger neighbors, their exponential phase of growth was reduced and maximum size was decreased. After the 50 years of stand development, more than 70% of Q. mongolica showed growth decline as a result of competitive stress, and mortality was about 30%, concentrated in smaller size classes. Compared to single stems, resprouts within clones do not seem to compete less asymmetric as might be expected based on studies of clonal herbaceous plants and physiological integration within genets. As Q. mongolica was also negatively affected by competition from woody species currently prevailing in the lower tree stratum (Tilia amurensis, Acer mono, Fraxinus rhynchophylla, Acer pseudosieboldianum), we predict the stand will become increasingly dominated by these more shade-tolerant trees.  相似文献   

10.
Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North‐American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy.  相似文献   

11.
Two Phaseolus vulgaris L. cultivars were exposed to reduced water and stem mechanical perturbation treatments (flexing) to determine if acclimation to these treatments induced hydraulic changes, altered cavitation resistance and changed stem mechanical properties. Additionally, this study sought to determine if changes in cavitation resistance would support the pit area or conduit reinforcement hypotheses. Flexing reduced biomass, leaf area, xylem vessel area and hydraulic conductivity. One cultivar had greater measures of stem strength and cavitation resistance. Flexing increased cavitation resistance (P50) but did not increase Young's modulus, rigidity or flexural strength on dried stems. Stem rigidity and basal diameter were correlated with leaf mass. The ratio of conduit wall thickness to span [(t/b)h2] increased under high water and flexing treatments while rigidity decreased for one cultivar exposed to both flexing and lower water suggesting an inability to compensate for two simultaneous stresses. Although P50 was not correlated with measures of mechanical strength, P50 was correlated with vessel diameter, consistent with the pit area hypothesis. This study confirmed that mechanical perturbation can impact xylem structural properties and result in altered plant water flow characteristics and cavitation resistance. Long‐term hydraulic acclimation in these herbaceous annuals was constrained by similar tradeoffs that constrain hydraulic properties across species.  相似文献   

12.
Summary Resprouting is the main regeneration mechanism after fire in Mediterranean-type ecosystems. Herbivores play an important role in controlling postfire seedling establishment, but their influence on regeneration by resprouting is less well known. To study the effects of fire intensity on resprouting of Adenostoma fasciculatum in southern California chaparral, and its interaction with herbivory, we conducted an experimental burn at three levels of fire intensity. We found that increasing fire intensity increased plant mortality, reduced the number of resprouts per plant, and delayed the time of resprouting. Herbivory increased with fire intensity, and was related to the time of resprouting. Plants resprouting later in the season and out of synchrony with the main flush were attacked more readily by herbivores. Post-resprouting mortality also increased with fire intensity and was significantly associated with herbivory in the higher fire intensity plots. Fire intensity effects on chaparral regeneration by resprouting may be farreaching through effects on the population structure, resprout production, and growth of Adenostoma fasciculatum.  相似文献   

13.
Rice KJ  Matzner SL  Byer W  Brown JR 《Oecologia》2004,139(2):190-198
During the extreme 1992–1997 El Niño drought event, widespread stem mortality, or tree dieback, of both mature and juvenile eucalypts occurred within the tropical savannas of northeast Australia. Most of the dieback occurred in individuals of the ironbark species complex (Eucalyptus crebra E. xanthoclada) while individuals of the bloodwood species Corymbia erythrophloia, exhibited significantly less stem mortality. Indicative of greater water stress, predawn and midday xylem water potentials of ironbark adults and saplings were significantly more negative than predawn values of bloodwoods. The very negative xylem water potentials in ironbarks suggest that stem mortality in both adult and juvenile ironbarks results from drought-induced embolism and that ironbarks perhaps have a shallower and less extensive root system than bloodwoods. Although predawn and midday water potentials for ironbark adults and saplings were similar, a census of mature and juvenile ironbark trees indicated that mortality was higher in adult trees. Cavitation vulnerability curves indicated that ironbark saplings may be better buffered against cavitation than adult trees. If they possess smaller root systems, saplings are more likely than adults to experience low xylem water potentials, even in non-drought years. Xylem conduits produced in adult trees during periods of normal rainfall, although perhaps more efficient in water conduction, may be more vulnerable to cavitation during infrequent severe droughts.  相似文献   

14.
To assess hydraulic architecture and limitations to water transport across scion–rootstock combinations (Prunus avium L. cultivar Van grafted on five differing size-controlling rootstocks: P. avium (vigorous) > CAB 11E > Maxma 14 > Gisela 5 > Edabriz (dwarfing)), we compared xylem anatomy, and calculated relative hydraulic conductivity (RC) and vulnerability index (VI) of roots (small, medium and large diameter) and stems. Water relations, leaf gas exchange and variations in growth were also determined. Roots exhibited larger-diameter xylem conduits (VD), greater RC and VI than stems in all Van–rootstock combinations. Moreover, there was a significantly higher vessel frequency (VF), lower VD, RC and VI in dwarfed trees, especially grafted on Gisela 5 than trees on the invigorating rootstocks, P. avium L., CAB 11E and Maxma 14. Anatomical constraints on water status imposed by the smaller VD (and/or in lower xylem thickness and root system length) of dwarfed trees imply a series of negative feedbacks, like a decrease in RC, stem water potential, leaf gas exchange and growth. On the other hand, Van grafted on CAB 11E and Maxma 14, with wide vessels and high VI, could be more susceptible to embolism, especially during periods of severe water stress, than trees on dwarfing rootstocks, which had small vessels and low VI.  相似文献   

15.
Summary Regeneration methods for coastal sage srub vegetation after fire were studied in the coastal Santa Monica Mountains of southern California. Six sites were sampled two years after a large fire of fall, 1978. The intensity of fire varied. Foliar cover and flowering incidence were recorded for individuals regenerating by resprouting or from seed. Resprouting plants contributed most to post-fire recovery, comprising 95% of the relative foliar shrub cover; 84% of resprout and 47% of seedling cover had flowered. An ANOVA of reproductive mode and fire intensity indicates that resprout total cover and individual size are significantly greater than those of seedlings, regardless of fire intensity. Among sites the average foliar cover of resprouts exceeded that of seedlings by factors ranging from 9 to 63. All coastal sage species examined resprout, although the potential vigor of resprouting appears to vary widely within genera (e.g. Encelia, Eriogonum, and Salvia) and even within species. In the second growing season following fire seedling density increased due to seeds shed by resprouted shrubs. Most of the cover on these stands of coastal sage scrub is destined to be either crown-sprouted individuals or their progeny.  相似文献   

16.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

17.
This paper analyzes the effect of the canopy age of Guiera senegalensis J.F. Gmel on water regulation processes and adaptative strategy to drought over a period of 2 years. The species is widespread in the agricultural Sahel. Before sowing, farmers cut back the shrubs to limit competition with crops. The stumps resprout after the millet harvest. Leaf water potential and stomatal conductance were measured in two fallows and in the two adjacent cultivated fields. Leaf transpiration rate and soil-to-leaf hydraulic conductance were deduced. The decrease in both stomatal and plant hydraulic conductance caused by seasonal drought was greater in mature shrubs than in current year resprouts. The decrease in predawn and midday leaf water potentials in response to seasonal drought was isohydrodynamic, and it was greater in mature shrubs, suggesting that current year resprouts are under less stress. In resprouts, the leaf transpiration rate stopped increasing beyond a hydraulic conductance threshold of 0.05 mol. m?2 s?1 MPa?1. Vulnerability to cavitation was determined on segments of stems in the laboratory. The leaf water potential value at which stomatal closure occurred was ?2.99 ± 0.68 MPa, which corresponded to a 30 % loss in xylem conductivity. Thanks to its positive safety margin of 0.6 MPa, G. senegalensis can survive above this value. The observed strategy places G. senegalensis among the non-extreme xeric plants, leading us to suppose that this species will be vulnerable to the expected increase in regional drought.  相似文献   

18.
Post-fire vegetation regeneration was studied for a 6-year period in a 13-year-old-artificial forest consisting of Larix kaempferi with a dense undergrowth of Sasa senanensis. The study site was classified into three fire severity categories according to the degree of Sasa senanensis scorching, that is, a high-severity category, a mid-severity category, and a low-severity category. Study plots were established in areas which fitted the criteria for each category, and in nearby unburned sites. A total of 41 woody species were newly emerged during the 6-year study period in the burned and unburned plots. Only a few seedlings and resprouts emerged in the unburned plots, while many seedlings emerged in the high-severity plots from the first year after fire onward. A high-severity fire that burns the rhizomes of Sasa is necessary for the vegetation recovery by germination of seed. Whereas the establishment of seedlings was restricted to a few years after fire, the regeneration through resprouting continued into the last year of observation. The survival time of resprouts was longer than that of seedlings, and the survival time of shade-tolerant species was longer than that of shade-intolerant species. In contrast, shade-intolerant species grew more rapidly than shade-tolerant species. The plants ability to exceed the maximum height of the Sasa before the bamboo recovers can be critical to the survival of shade-intolerant species. Because resprouts have a stronger resistance to the shade of Sasa than seedlings, the resprouts of shade-tolerant species play a major role in the re-establishment of woody species after fire in sites with considerable Sasa ground-cover.  相似文献   

19.
Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially explicit, analytical water transport model for stems. Our model allows Huber ratio, stem‐saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole‐stem emergent property resulting from non‐linear pressure‐conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits.  相似文献   

20.
Carica papaya L. does not contain wood, according to the botanical definition of wood as lignified secondary xylem. Despite its parenchymatous secondary xylem, these plants are able to grow up to 10‐m high. This is surprising, as wooden structural elements are the ubiquitous strategy for supporting height growth in plants. Proposed possible alternative principles to explain the compensation for lack of wood in C. papaya are turgor pressure of the parenchyma, lignified phloem fibres in the bark, or a combination of the two. Interestingly, lignified tissue comprises only 5–8% of the entire stem mass. Furthermore, the phloem fibres do not form a compact tube enclosing the xylem, but instead form a mesh tubular structure. To investigate the mechanism of papaya's unusually high mechanical strength, a set of mechanical measurements were undertaken on whole stems and tissue sections of secondary phloem and xylem. The structural Young's modulus of mature stems reached 2.5 GPa. Since this is low compared to woody plants, the flexural rigidity of papaya stem construction may mainly be based on a higher second moment of inertia. Additionally, stem turgor pressure was determined indirectly by immersing specimens in sucrose solutions of different osmolalities, followed by mechanical tests; turgor pressure was between 0.82 and 1.25 MPa, indicating that turgor is essential for flexural rigidity of the entire stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号