首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was carried out to determine interactive and comparative effects of salinity and water stress on growth, proline accumulation, chlorophyll, carotenoid and macro nutrient content and antioxidative enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) in hydroponically grown maize (Zea mays L.cv DKC647) plants. Plants were treated two salt (NaCl) concentrations and polyethylene glycol 6000 (PEG 6000) to create water stress. The results obtained from this experiment show that high salinity reduced growth through decreasing shoot and root dry and fresh weight, chlorophyll, and carotenoid content, but PEG treatment had no significant effect on this parameters. Under NaCl and PEG 6000 treatment, uptake and translocation of mineral nutrients changed drastically. The high presence of Na+ in nutrient solution affected considerably the plant nutritional requirement, especially influencing the uptake of Ca2+ and K+, which were restricted for competition. Proline accumulation, and SOD, POX and PPO activities were increased with the increasing intensity of NaCl stress, but PEG 6000 treatment in addition to NaCl had more significant effect on this enzyme activities. These results suggest that maize plants may be increased proline content to maintain osmotic adjustment and increased the activity of antioxidant enzymes to have a better protection against active oxygen species (AOS) under salt and water stress.  相似文献   

2.
In order to assess the role of the antioxidant defense system against salt treatment, the activities of some antioxidative enzymes and levels of some nonenzymatic antioxidants were estimated in Azolla caroliniana subjected to NaCl treatment (50 mM) for 10 days in absence or presence of nitrate. In A. caroliniana, salt treatment in absence of nitrate preferentially enhanced electrolyte leakage, lipid peroxidation, and H2O2 content. Also, the specific activitiy of guaiacol peroxidase (POX), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased. In addition, reduced glutathione level increased and consequently, glutathione/oxidized glutathione (GSH/GSSG) ratio increased. Accumulation of Na+ increased significantly by salinity stress which resulted in a significant decrease in K+ accumulation, accordingly, K+/Na+ ratio decreased. Replacement of potassium chloride by potassium nitrate in nutrient solution under salt stress (50 mM NaCl) exhibited a reduction in electrolyte leakage, lipid peroxidation, and H2O2 contents. Conversely, the specific activity of APX, POX, GR, CAT, and SOD increased. The content of total ascorbate decreased, in contrast, reduced and GSSG increased and the ratio of GSH/GSSG increased 2.3-fold compared to the control value. Sodium ion accumulation was minimized in the presence of nitrate, potassium ion accumulation increased and as a result, K+/Na+ ratio increased when compared with the corresponding salinized plants. The differential changes in the specific activity of antioxidant enzymes due to NaCl treatment and nitrate may be useful as markers for recognizing salt tolerance in A. caroliniana.  相似文献   

3.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

4.
The effects of exogenous 24-epibrassinolide (EBR) on the growth, oxidative damage, antioxidant system and ion contents in eggplant (Solanum melongena L.) seedlings under salt stress were investigated. Eggplant seedlings were exposed to 90 mM NaCl with 0, 0.025, 0.05, 0.10 and 0.20 mg dm−3 EBR for 10 d. EBR, especially at concentration 0.05 mg dm−3, alleviated growth suppression caused by NaCl stress, decreased electrolyte leakage, superoxide production and content of malondialdehyde and H2O2 in NaCl-treated plants. EBR also increased activities of superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase and the contents of ascorbic acid and reduced glutathione. Furthermore, we also found that Na+, Cl contents were decreased, K+, Ca2+ contents and K+/Na+, Ca2+/Na+ ratios were increased in the presence of EBR under salt stress.  相似文献   

5.
In this study, responses of wild species of potato to NaCl stress were investigated in vitro. In S. stoloniferum and S. bulbosum, length of the shoot, fresh and dry weight, photosynthetic pigments, K+ concentration, K+/Na+ ratio, ascorbate pool, anthocyanin, and phenolic and flavonoid compounds were decreased in response to salinity. In these species, salinity increased the level of Na+, lipid peroxidation, proline and ion leakage percentage. In S. acaule, the length of the shoot, and fresh and dry weight were not affected by salinity. Photosynthetic pigments, Na+ concentration, proline, flavonoid and phenolic compounds quantities were increased and K+/Na+ ratio were decreased. K+ concentration, lipid peroxidation, ascorbate pool, anthocyanin and ion leakage were not changed by NaCl stress. Superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and catalase activities were increased in all species. The results suggest that the non-enzymatic antioxidant capacity in S. acaule (salt tolerant) is more important than the enzymatic antioxidant capacity in comparison with the other species.  相似文献   

6.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

7.
The effects of salt stress on growth parameters, free proline content, ion accumulation, lipid peroxidation, and several antioxidative enzymes activities were investigated in S. persica and S. europaea. The seedlings were grown for 2 months in half-strength Hoagland solution and treated with different concentrations of NaCl (0, 85, 170, 340, and 510 mM) for 21 days. The fresh and dry weights of both species increased significantly at 85 and 170 mM NaCl and decreased at higher concentrations. Salinity increased proline content in both the species as compared to that of control. Sodium (Na+) content in roots and shoots increased, whereas K+ and Pi content in both organs decreased. At all NaCl concentrations, the total amounts of Na+ and K+ were higher in shoots than in roots. Malondialdehyde (MDA) content declined at moderate NaCl concentrations (85 and 170 mM) and increased at higher levels. With increased salinity, superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) activities also increased gradually in both species. In addition, it seems that GPX, CAT, and SOD activities play an essential protective role in the scavenging reactive oxygen species (ROS) in both species. Native polyacrylamide gel electrophoresis (PAGE) indicated different isoform profiles between S. persica and S. europaea concerning antioxidant enzymes. These results showed that S. persica exhibits a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea possibly by maintaining and/or increasing growth parameters, ion accumulation, and antioxidant enzyme activities.  相似文献   

8.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

9.
10.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

11.
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed. The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance. Salt stresses significantly reduced relative water content (RWC), chlorophyll (Chl) content, K+ and K+ /Na+ ratio, photosynthetic rate (PN), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci) and increased the levels of proline (Pro) and lipid peroxidation (MDA) contents, Na+ , superoxide (O2•− ) and hydrogen peroxide (H2O2) in both tolerant and sensitive mustard genotypes. The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) were increased with increasing salinity in salt tolerant genotypes, BJ-1603, BARI Sarisha-11 and BARI Sarisha-16, but the activities were unchanged in salt sensitive genotype, BARI Sarisha-14. Besides, the increment of ascorbate peroxidase (APX) activity was higher in salt sensitive genotype as compared to tolerant ones. However, the activities of glutathione reductase (GR) and glutathione S-transferase (GST) were increased sharply at stress conditions in tolerant genotypes as compared to sensitive genotype. Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes, BJ-1603 and BARI Sarisha-16.  相似文献   

12.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

13.
Alternative respiration pathway (AP) is an important pathway which can be induced by environment stresses in plants. In the present study, we show a new mechanism involving the AP in nitrogen deprivation-induced tolerance of Poa annua callus to salt stress. The AP capacity markedly increased under a 600 mM NaCl treatment or nitrogen deprivation pretreatment and reached a maximum under the nitrogen deprivation pretreatment combined with the NaCl treatment (–N+NaCl). Malondialdehyde (MDA) and H2O2 content and Na+/K+ ratio significantly increased under the 600 mM NaCl treatment but less under the–N+NaCl treatment. Moreover, both the nitrogen deprivation and the NaCl stress stimulated the plasma membrane (PM) H+-ATPase activity and increased pyruvate content. The maximal stimulating effect was found under the–N+NaCl treatment. When the AP capacity was reduced by salicylhydroxamic acid (SHAM, an inhibitor of AP), content of MDA and H2O2 and Na+/K+ ratio dramatically increased, whereas PM H+-ATPase activity decreased. Moreover, exogenous application of pyruvate produced a similar effect as the nitrogen deprivation pretreatment. The effects of SHAM on the Poa annua callus were counteracted by catalase (a H2O2 scavenger) and diphenylene iodonium (a plasma membrane NADPH oxidase inhibitor). Taken together, our results suggest that the nitrogen deprivation enhanced the capacity of AP by increasing pyruvate content, which in turn prevented the Poa annua callus from salt-induced oxidative damages and Na+ over-uptake.  相似文献   

14.
To investigate the salt tolerance mechanisms, Aeluropus lagopoides as a halophytic plant was used. Plants were treated with 0, 150, 450, 600, and 750 mM NaCl and harvested at 0, 4, 8, and 10 days after treatment and 1 day and 1 week after recovery. Optimal growth, measured as fresh and dry weights, occurred at 150 mM NaCl, but it was suppressed by 450, 600, and 750 mM NaCl. Recovery significantly increased fresh and dry weights only in 750 mM NaCl-treated plants. Water content was decreased after NaCl treatment and increased after recovery. Na+ and proline contents and activity of superoxide dismutase (SOD) were increased after NaCl treatment and decreased after recovery in all treated plants. In contrast, K+ content and ascorbate peroxidase activity decreased after NaCl treatment and increased after recovery in all treated plants. Catalase (CAT) was activated only in 750 mM NaCl-treated plants. Total content of soluble protein was slightly changed after NaCl treatment. It was concluded that proline accumulation for osmotic adjustment, SOD activation for O2·− scavenging, and CAT activation at the higher level of salt stress to detoxify produced H2O2 were main A. lagopoides strategies under salt stress. A. lagopoides salt tolerance was not based on the restriction of Na+ uptake.  相似文献   

15.
Soil salinity and drought are the two most common and frequently co‐occurring abiotic stresses limiting cotton growth and productivity. However, physiological mechanisms of tolerance to such condition remain elusive. Greenhouse pot experiments were performed to study genotypic differences in response to single drought (4% soil moisture; D) and salinity (200 mM NaCl; S) stress and combined stresses (D + S) using two cotton genotypes Zhongmian 23 (salt‐tolerant) and Zhongmian 41 (salt‐sensitive). Our results showed that drought and salinity stresses, alone or in combination, caused significant reduction in plant growth, chlorophyll content and photosynthesis in the two cotton genotypes, with the largest impact visible under combined stress. Interestingly, Zhongmian 23 was more tolerant than Zhongmian 41 under the three stresses and displayed higher plant dry weight, photosynthesis and antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX) activities compared to control, while those parameters were significantly decreased in salt‐stresses Zhongmian 41 compared to control. Moreover, Na+/K+‐ATPase activity was more enhanced in Zhongmian 23 than in Zhongmian 41 under salinity stress. However, under single drought stress and D + S stress no significant differences were observed between the two genotypes. No significant differences were detected in Ca2+/Mg2+‐ATPase activity in Zhongmian 41, while in Zhongmian 23 it was increased under salinity stress. Furthermore, Zhongmian 23 accumulated more soluble sugar, glycine‐betaine and K+, but less Na+ under the three stresses compared with Zhongmian 41. Obvious changes in leaf and root tips cell ultrastructure was observed in the two cotton genotypes. However, Zhongmian 23 was less affected than Zhongmian 41 especially under salinity stress. These results give a novel insight into the mechanisms of single and combined effects of drought and salinity stresses on cotton genotypes.  相似文献   

16.
Physiological responses of two wheat (Triticum aestivum L.) genotypes (salt-tolerant DK961 and salt-sensitive JN17) to increased salt concentrations (50, 100, 150 mM NaCl: NaCl50, NaCl100, NaCl150) were studied. Photosynthetic capacity, irradiance response curves, contents of soluble sugars, proteins, and chlorophyll (Chl), K+/Na+ ratio, and activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in flag leaves were measured on 7 d after anthesis. In control (NaCl0) plants, non-significant (p>0.05) differences were found in gas exchange and saturation irradiance (SI) between salt-tolerant (ST) and salt-sensitive (SS) wheat genotypes. However, we found higher soluble sugar and protein contents, K+/Na+ ratio, and antioxidant enzyme activities, but lower Chl content and yield in ST wheat. Salinity stresses remarkably increased soluble sugar and protein contents and the antioxidant activities, but decreased K+/Na+ ratio, Chl contents, SI, photosynthetic capacities, and yield, the extent being considerably larger in JN17 than DK961. Although the soluble sugar and protein contents and the antioxidant activities of JN17 elevated more evidently under salt stresses, those variables never reached the high levels of DK961. The antioxidant enzyme activities of SS wheat increased in NaCl50 and NaCl100, but decreased rapidly when the NaCl concentration reached 150 mM. Thus the ST wheat could maintain higher grain yield than the SS one by remaining higher osmoregulation and antioxidative abilities, which led to higher photosynthetic capacity. Hence the ST wheat could harmonize the relationship between CO2 assimilation (source) and the grain yield (sink) under the experimental conditions.  相似文献   

17.
以甘草属2种耐盐植物胀果甘草、乌拉尔甘草为材料,用不同浓度(50、100、150、200、250mmol·L-1)NaCl处理幼苗21d后,分析其生物量和根、茎、叶中的Na+、K+含量以及K+/Na+,计算根的离子选择吸收和运输系数,并应用光学显微镜观察比较二者的维管组织结构变化,以揭示2种药用甘草幼苗根对Na+的响应及其维管组织结构的变化特征,探讨甘草的耐盐机理。结果表明:(1)NaCl胁迫使2种甘草幼苗生物量均下降,在NaCl浓度为250mmol·L-1时,胀果甘草、乌拉尔甘草幼苗生物量分别是对照的53.34%、46.21%,胀果甘草耐盐性强于乌拉尔甘草。(2)随着NaCl浓度上升,2种甘草根积累的Na+显著增多,其中胀果甘草在所有盐处理下,根Na+含量均高于其它器官,说明其根对吸收的Na+具有显著截留效应;而乌拉尔甘草只在0~150mmol·L-1 NaCl范围内,根Na+含量显著高于叶片,当NaCl为200、250mmol·L-1时,叶片Na+含量显著高于根,说明乌拉尔甘草根对Na+的截留能力有限。(3)在相同盐处理下,胀果甘草离子选择吸收系数SAK,Na、离子运输系数STK,Na均大于乌拉尔甘草,胀果甘草根抑制Na+、促进K+向地上部运输的能力强于乌拉尔甘草。(4)乌拉尔甘草在NaCl为150、200mmol·L-1、胀果甘草在250mmol·L-1时,根结构对盐胁迫产生应激性响应,维管组织比例显著上升,有助于提高根向上的运输能力,减少盐害。研究表明,2种药用甘草根对Na+截留作用和向上运输时促K+抑Na+能力的差异,是导致其耐盐能力不同的主要原因,根对Na+的积累和截留作用的差异与根的结构响应相吻合,能较好地解释二者的耐盐性差异。  相似文献   

18.
Ginkgo suspension cells were used to investigate the mechanism that governs the shift between primary and secondary metabolism under NaCl elicitation. The production of three flavonol glycosides, chlorophyll fluorescence, ion content, the antioxidant system, and the cellular ultrastructure in the presence of NaCl doses from 5 to 175 mM were examined. At low salt doses (5–50 mM), cell growth and flavonol glycosides accumulation were stimulated without damaging cell structure or inducing oxidative stress by maintaining high K+ and chlorophyll content. At moderate salt doses (75–125 mM), the cells could withstand the salt stress without an impact on survival by changing internal cellular structure, maintaining high levels of K+ and Ca2+ and increasing anti-oxidative enzyme activities rather than flavonol glycosides to counteract the inhibition of the photosystem II, the accumulation of Na+ and hydrogen peroxide (H2O2) in the cells. This allowed cells to divert their metabolism from growth to defense-related pathways and tolerate NaCl stress. At higher salinity (150–175 mM), the cellular structure was damaged, and the high Na+ and low K+ content led to osmotic stress, and therefore, the stimulation of peroxidase (POD) and catalase (CAT) was not enough to cope with high H2O2 accumulation. The high production of flavonol glycosides may be a response of elicitation stimulation to serious damage at 175 mM NaCl. In conclusion, the use of 175 mM NaCl may be desirable for the induction of flavonol glycoside production in Ginkgo suspension cells.  相似文献   

19.
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption.  相似文献   

20.
A study was conducted using ten genetically diverse genotypes along with their 45F1 (generated by diallel mating) under normal and salt stress conditions. Although, tomato (Lycopersicon esculentum Mill.) is moderately sensitive to salinity but more attention to salinity is yet to be required in the production of tomato. In present study, germination rate, speed of germination, dry weight ratio and Na+/K+ ratio in root and shoot, were the parameters assayed on three salinity levels; control, 1.0 % NaCl and 3.0 % NaCl with Hoagland’s solution. Increasing salt stress negatively affected growth and development of tomato. When salt concentration increased, germination of tomato seed was reduced and the time needed to complete germination lengthened, root/shoot dry weight ratio was higher and Na+ content increased but K+ content decreased. Among the varieties, Sel-7 followed by Arka Vikas and crosses involving them as a parent were found to be the more tolerant genotypes in the present study on the basis of studied parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号