首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokine receptor 5 (CCR5) is a cell surface protein required for HIV-1 infection. It is important to detect the amount and observe the spatial distribution of the CCR5 receptors on the cell surfaces. In this report, we describes the metal nanoparticles which were specially designed as molecular fluorescent probes for imaging of CCR5 receptors on the T-lymphocytic PM1 cell surfaces. These CCR5 monoclonal antibodies (mAbs) metal complexes were prepared by labeling mAbs with Alexa Fluor 680 followed by covalent binding the labeled mAbs on the 20 nm silver nanoparticles. Compared with the labeled mAbs without metal, the mAb-metal complexes were found to display enhanced emission intensity and shortened lifetime due to interactions between fluorophores and metal. The mAb-metal complexes were incubated with the PM1 cell lines. The confocal fluorescent intensity and lifetime cell images were recorded on single cells. It was observed that the mAb-metal complexes could be clearly distinguished from the cellular autofluorescence. By analyzing a pool of cell images, we observed that most CCR5 receptors appeared as clusters on the cell surfaces. The fluorophore-metal complexes developed in this report are generally useful for detection of cell surface receptors and provide a new class of probe to study the interaction between the CCR5 receptors with viral gp120 during HIV infections.  相似文献   

2.
Membrane topology of receptors plays an important role in shaping transmembrane signalling of cells. Among the methods used for characterizing receptor clusters, fluorescence resonance energy transfer between a donor and acceptor fluorophore plays a unique role based on its capability of detecting molecular level (2-10 nm) proximities of receptors in physiological conditions. Recent development of biotechnology has made possible the usage of colloidal gold particles in a large size range for specific labelling of cells for the purposes of electron microscopy. However, by combining metal and fluorophore labelling of cells, the versatility of metal-fluorophore interactions opens the way for new applications by detecting the presence of the metal particles by the methods of fluorescence spectroscopy. An outstanding feature of the metal nanoparticle-fluorophore interaction is that the metal particle can enhance spontaneous emission of the fluorophore in a distance-dependent fashion, in an interaction range essentially determined by the size of the nanoparticle. In our work enhanced fluorescence of rhodamine and cyanine dyes was observed in the vicinity of immunogold nanoparticles on the surface of JY cells in a flow cytometer. The dyes and the immunogold were targetted to the cell surface receptors MHCI, MHCII, transferrin receptor and CD45 by monoclonal antibodies. The fluorescence enhancement was sensitive to the wavelength of the exciting light, the size and amount of surface bound gold beads, as well as the fluorophore-nanoparticle distance. The intensity of 90 degrees scattering of the incident light beam was enhanced by the immunogold in a concentration and size-dependent fashion. The 90 degrees light scattering varied with the wavelength of the incident light in a manner characteristic to gold nanoparticles of the applied sizes. A reduction in photobleaching time constant of the cyanine dye was observed in the vicinity of gold particles in a digital imaging microscope. Modulations of 90 degrees light scattering intensity and photobleaching time constant indicate the role of the local field in the fluorescence enhancement. A mathematical simulation based on the electrodynamic theory of fluorescence enhancement showed a consistency between the measured enhancement values, the inter-epitope distances and the quantum yields. The feasibility of realizing proximity sensors operating at distance ranges larger than that of the conventional Forster transfer is demonstrated on the surface of living cells.  相似文献   

3.
This brief review explores some recent observations relating to the structure of untransformed glucocorticoid and progesterone receptors and the mechanism by which the receptors are transformed to the DNA-binding state. In their molybdatestabilized, untransformed state, progesterone and glucocorticoid receptors exist as a heteromeric 8-9S complex containing one unit of steroid binding phosphoprotein and one or two units of the 90 kD heat shock protein hsp90. When the receptors are transformed, the steroid-binding protein dissociates from hsp90. In cytosol preparations, temperature-mediated dissociation proceeds much more rapidly in the presence of hormone. The dissociated receptor binds to DNA with high affinity, regardless of whether it is in the hormone-bound or the hormone-free state. These observations raise the possibility that the primary, and perhaps the only, role for the hormone is to promote dissociation of the receptor-hsp90 complex. Molybdate, vanadate, and tungstate inhibit receptor transformation to the DNA-binding form, an effect that appears to reflect the ability of these transition metal oxyanions to stabilize the complex between the steroid receptor and hsp90. By promoting the formation of disulfide bonds, hydrogen peroxide also stabilizes the glucocorticoid receptor-hsp90 complex and prevents receptor transformation. A small, heat-stable factor present in all cytosol preparations inhibits receptor transformation, and, when the factor is removed, glucocorticoid receptors are rapidly transformed. This ubiquitous factor has the physical properties of a metal anion, and it is proposed that molybdate and vanadate affect steroid receptor complexes by interacting with a metal anion-binding site that is normally occupied by this endogenous receptor-stabilizing factor.  相似文献   

4.
Glioblastoma (GBM) is the most frequent and inevitably lethal primary brain cancer in adults. It is recognized that the overexpression of the endosomal Na+/H+ exchanger NHE9 is a potent driver of GBM progression. Patients with NHE9 overexpression have a threefold lower median survival relative to GBM patients with normal NHE9 expression, using available treatment options. New treatment strategies tailored for this GBM subset are much needed. According to the prevailing model, NHE9 overexpression leads to an increase in plasma membrane density of epidermal growth factor receptors (EGFRs) which consequently enhances GBM cell proliferation and migration. However, this increase is not specific to EGFRs. In fact, the hallmark of NHE9 overexpression is a pan‐specific increase in plasma membrane receptors. Paradoxically, we report that this gain of function in NHE9 can be exploited to effectively target GBM cells for destruction. When exposed to gold nanoparticles, NHE9 overexpressing GBM cells accumulated drastically high amounts of gold via receptor‐mediated endocytosis, relative to control. Irradiation of these cells with near‐infrared light led to apoptotic tumour cell death. A major limitation for delivering therapeutics to GBM cells is the blood‐brain barrier (BBB). Here, we demonstrate that macrophages loaded with gold nanoparticles can cross the BBB, deliver the gold nanoparticles and effect the demise of GBM cells. In combination with receptor tyrosine kinase inhibition, we show this approach holds great promise for a new GBM‐targeted therapy.  相似文献   

5.
Using a homologous competition of54Mn-transferrin with Mntransferrin and65Zn-transferrin with Zn-transferrin, it was found that on the plasma membrane of lactating mouse mammary gland cells there are receptor binding Mn-transferrin and Zn-transferrin. The heterologous competition between labeled and nonlabeled Fe-transferrin, Mn-transferrin and Zn-transferrin, as well as almost equal affinity constants of cellular receptors toward the three metals by competition of Fe-transferrin suggests that one and the same receptor accepts all three metals from the transferrin molecule. The cell receptors therefore possess a polymetal binding function. A model and a mechanism for regulation of the transport metal flow toward the mammary gland cell acting like “automated switching over” are proposed.  相似文献   

6.
We created a molecular model of the human melanocortin 4 receptor (MC4R) and introduced a series of His residues into the receptor protein to form metal ion binding sites. We were able to insert micromolar affinity binding sites for zinc between transmembrane region (TM) 2 and TM3 where the metal ion alone was able to activate this peptide binding G-protein-coupled receptor. The exact conformation of the metal ion interactions allowed us to predict the orientation of the helices, and remodeling of the receptor protein indicated that Glu100 and Ile104 in TM2 and Asp122 and Ile125 in TM3 are directed toward a putative area of activation of the receptor. The molecular model suggests that a rotation of TM3 may be important for activation of the MC4R. Previous models of G-protein-coupled receptors have suggested that unlocking of a stabilizing interaction between the DRY motif, in the cytosolic part of TM3, and TM6 is important for the activation process. We suggest that this unlocking process may be facilitated through creation of a new interaction between TM3 and TM2 in the MC4R.  相似文献   

7.
Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.  相似文献   

8.
Darunavir has a low oral bioavailability (37%) due to its lipophilic nature, metabolism by cytochrome P450 enzymes and P-gp efflux. Lipid nanoparticles were prepared in order to overcome its low bioavailability and to increase the binding efficacy of delivery system to the lymphoid system. Darunavir-loaded lipid nanoparticles were prepared using high-pressure homogenization technique. Hydrogenated castor oil was used as lipid. Peptide, having affinity for CD4 receptors, was grafted onto the surface of nanoparticles. The nanoparticles were evaluated for various parameters. The nanoparticles showed size of less than 200 nm, zeta potential of ? 35.45 mV, and a high drug entrapment efficiency (90%). 73.12% peptide was found conjugated to nanoparticles as studied using standard BSA calibration plot. Permeability of nanoparticles in Caco-2 cells was increased by 4-fold in comparison to plain drug suspension. Confocal microscopic study revealed that the nanoparticles showed higher uptake in HIV host cells (Molt-4 cells were taken as model containing CD4 receptors) as compared to non-CD4 receptor bearing Caco-2 cells. In vivo pharmacokinetic in rats showed 569% relative increase in bioavailability of darunavir as compared to plain drug suspension. The biodistribution study revealed that peptide-grafted nanoparticles showed higher uptake in various organs (also in HIV reservoir organs namely the spleen and brain) except the liver compared to non-peptide-grafted nanoparticles. The prepared nanoparticles resulted in increased binding with the HIV host cells and thus could be promising carrier in active targeting of the drugs to the HIV reservoir.  相似文献   

9.
A cDNA clone corresponding to the entire coding region of the bovine ETB endothelin receptor mRNA was isolated from a lung cDNA library and sequenced. The cDNA encodes 441 amino acids: 26 constituting an NH2-terminal signal peptide and 415 constituting the mature receptor. The signal peptidase cleavage site was determined by direct amino acid sequencing of purified receptor. A comparison of the predicted amino acid sequence with the available bovine ETA and rat ETB endothelin receptor sequences revealed 63 and 85% homology, respectively. Endothelin receptors of various species are known to be very sensitive to a certain metal proteinase(s) and have been shown to be converted to a lower Mr form in the absence of EDTA. The metal proteinase cleavage site was also determined by direct protein sequencing of the proteolysis product. The amino acid sequence (Ala-Gly-X-Pro-Pro-Arg) surrounding the cleavage site (between Ala-79 and Gly-80) is conserved among the ETB endothelin receptors, explaining the above mentioned proteolytic conversion from the higher to lower Mr forms observed in various species.  相似文献   

10.
After intravenous injection, the main part of nanoparticles trapped by the spleen are concentrated in the marginal zone. The first step of this capture is the adhesion of the particles to the marginal zone macrophages. As classical techniques of cell suspension preparation did not allow to isolate without damage these actively capturing cells, tightly bound to a well-developed reticular meshwork, we designed a tissue slice incubation method, in order to study in vitro the interaction of nanoparticles with these particular macrophages, in conditions close to in vivo. In a serum supplemented medium, this in vitro model was able to give similar uptake profile than after intravenous injection of nanoparticles thus proving its validity. Surprisingly, no significant decrease of nanoparticles capture was observed when the medium was depleted from complement, immunoglobulins or proteins affine for heparin, while substitution of serum by purified albumin allowed a near optimal uptake. Addition of competitive ligands for lectin-like receptors did not show any clear inhibition of spleen capture. On the other hand, the scavenger receptor blocking agents, such as maleylated albumin or polyinosinic acid, induced a strong reduction of the spleen nanoparticles uptake. Thus, this paper proposes an in vitro binding assay as a reliable method to investigate the spleen capture of a large variety of nanoparticulate drug carriers. It is also a useful methodology to highlight the interactions between spleen cells and nanoparticles. The data obtained suggest that capture of nanoparticles depends on a multifactorial and complex phenomenon involving for a part albumin and the scavenger receptor.  相似文献   

11.
1. The serotonin(1A) (5-HT(1A)) receptor is an important representative of G-protein coupled family of receptors. It is the most extensively studied among the serotonin receptors, and appears to be involved in various behavioral and cognitive functions. 2. We report here the pharmacological and functional characterization of the human serotonin(1A) receptor stably expressed in HN2 cell line, which is a hybrid cell line between hippocampal cells and mouse neuroblastoma. 3. Our results show that serotonin(1A) receptors in HN2-5-HT(1A)R cells display ligand-binding properties that closely mimic binding properties observed with native receptors. We further demonstrate that the differential discrimination of G-protein coupling by the specific agonist and antagonist, a hallmark of the native receptor, is maintained for the receptor in HN2-5-HT(1A)R cells. Importantly, the serotonin(1A) receptor in HN2-5-HT(1A)R cells shows efficient downstream signalling by reducing cellular cyclic AMP levels. 4. We conclude that serotonin(1A) receptors expressed in HN2-5-HT(1A)R cells represent a useful model system to study serotonin(1A) receptor biology, and is a potential system for solubilization and purification of the receptor in native-like membrane environment.  相似文献   

12.
This paper reports the creation of Au nanoparticles (AuNP) that are soluble in aqueous solution over a broad range of pH and ionic strength values and that are capable of selective uptake by folate receptor positive (FR+) cancer cells. A novel poly(ethylene glycol) (PEG) construct with thioctic acid and folic acid coupled on opposite ends of the polymer chain was synthesized for targeting the AuNP to FR+ tumor cells via receptor-mediated endocytosis. These folic acid-PEG-thioctic acid conjugates were grafted onto 10-nm-diameter Au particles in aqueous solution. The resulting folate-PEG-coated nanoparticles do not aggregate over a pH range of from 2 to 12 and at electrolyte concentrations of up to 0.5 M NaCl with particle concentrations as high as 1.5 x 10(13) particles/mL. Transmission electron microscopy was used to document the performance of these coated nanoparticles in cell culture. Selective uptake of folate-PEG grafted AuNPs by KB cells, a FR+ cell line that overexpress the folate receptor, was observed. AuNP uptake was minimal in cells that (1) do not overexpress the folate receptor, (2) were exposed to AuNP lacking the folate-PEG conjugate, or (3) were co-incubated with free folic acid in large excess relative to the folate-PEG grafted AuNP. Understanding this process is an important step in the development of methods that use targeted metal nanoparticles for tumor imaging and ablation.  相似文献   

13.
An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha-melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect of the metal ion appeared to be additive, because the maximal cAMP response for alpha-MSH in the presence of Zn(II) was 60% above the maximal response for the peptide alone. The affinity of Zn(II) could be increased through binding of the metal ion in complex with small hydrophobic chelators. The binding affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained in the MC1 receptor. Metal ion-chelator complexes having antagonistic properties were also found. An initial attempt to map the metal-ion binding site in the MC1 receptor indicated that Cys(271) in extracellular loop 3 and possibly Asp(119) at the extracellular end of TM-III, which are both conserved among all MC receptors, are parts of the site. It is concluded that the function of the MC1 and MC4 receptors can be positively modulated by metal ions acting both as partial agonists and as potentiators for other agonists, including the endogenous peptide ligand alpha-MSH at Zn(II) concentrations that could be physiological. Furthermore, the metal ion-chelator complexes may serve as leads in the development of novel melanocortin receptor modulators.  相似文献   

14.
Transferrin is a well-studied ligand for tumor targeting due to upregulation of transferrin receptors in numerous cancer cell types. Here, we report the development of a transferrin-modified, cyclodextrin polymer-based gene delivery system. The delivery system is comprised of a nanoparticle (formed by condensation of a cyclodextrin polycation with nucleic acid) that is surface-modified to display poly(ethylene glycol) (PEG) for increasing stability in biological fluids and transferrin for targeting of cancer cells that express transferrin receptor. A transferrin-PEG-adamantane conjugate is synthesized for nanoparticle modification. The transferrin conjugate retains high receptor binding and self-assembles with the nanoparticles by adamantane (host) and particle surface cyclodextrin (guest) inclusion complex formation. At low transferrin modification, the particles remain stable in physiologic salt concentrations and transfect K562 leukemia cells with increased efficiency over untargeted particles. The increase in transfection is eliminated when transfections are conducted in the presence of excess free transferrin. The transferrin-modified nanoparticles are appropriate for use in the systemic delivery of nucleic acid therapeutics for metastatic cancer applications.  相似文献   

15.
Human platelet-derived growth factor (PDGF) occurs as three isoforms which are made up of disulfide-bonded A and B chains. The isoforms bind with different affinities to two different but structurally related cell surface receptors. The A type receptor binds all three isoforms (PDGF-AA, PDGF-AB, PDGF-BB) with high affinity, whereas the B type receptor binds PDGF-BB with high affinity, PDGF-AB with lower affinity but does not appear to bind PDGF-AA. We have utilized the differential effects of the three isoforms on actin reorganization and membrane ruffling in human foreskin fibroblasts to probe the idea that ligand-induced receptor dimerization is associated with receptor activation. Actin reorganization was found to be induced only by PDGF-AB and PDGF-BB and is therefore likely to be mediated by the B type receptor. Simultaneous addition of PDGF-AA, or downregulation of the A type receptor blocked the effect of PDGF-AB but not that of PDGF-BB. This is compatible with a model by which PDGF-AB binds to and dimerizes one A and one B type receptor; PDGF-AB therefore requires A type receptors in order to be functionally active at physiological concentrations. In cells with down-regulated A type receptors, high concentrations of PDGF-AB inhibited the effect of PDGF-BB on actin reorganization. We believe that this is due to a monovalent binding of PDGF-AB to the B type receptors which prevents PDGF-BB from dimerizing the receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adenosine released during cardiac ischemia exerts a marked protective effect in the heart that is mediated by the A(1) and A(3) subtypes of adenosine receptors. The signaling pathways activated by these adenosine receptors have now been characterized in a chick embryo ventricular myocyte culture model of cardioprotection against ischemia. Selective A(1) and A(3) receptor agonists were shown to activate phospholipases C and D, respectively, to achieve their distinct cardioprotective effects. The specificity of the A(3) receptor-phospholipase D interaction was also demonstrated in chick embryo atrial myocytes (which do not express endogenous A(3) receptors) that had been transfected with a vector encoding the human A(3) receptor. Activation of both endogenous A(1) and A(3) receptors in ventricular myocytes resulted in a protective response greater than that induced by stimulation of either receptor alone. Agonists that activate both adenosine A(1) and A(3) receptors may thus prove beneficial for the treatment of myocardial ischemia.  相似文献   

17.
GABARAP (GABA(A) receptor-associated protein) interacts with both microtubules and GABA(A) receptors in vitro and in vivo and is capable of modulating receptor channel kinetics. In this study, we use the intracellular loop of 15 GABA(A) receptor subunits to show that the interaction between GABARAP and GABA(A) receptor is specific for the gamma subunits. Pharmacological characterization of proteins purified by GABARAP affinity column indicates that native GABA(A) receptors interact with GABARAP. Quantitative yeast two-hybrid assays were used to identify the interaction domain in the gamma2 subunit for GABARAP binding, and to identify the interaction domain in GABARAP for GABA(A) receptor binding. A peptide corresponding to the GABARAP interaction domain in the gamma2 subunit was used to inhibit the interaction between GABARAP and the gamma2 subunit. In addition, the ability of GABARAP to promote cluster formation of recombinant receptors expressed in QT-6 fibroblasts was inhibited by a membrane-permeable form of this peptide in a time-dependent manner. The establishment of a model for GABARAP-induced clustering of GABA(A) receptors in living cells and the identification of subunit specificity and interaction domains in the interaction between GABARAP and GABA(A) receptors is a step in dissecting the function of GABARAP in GABA(A) receptor clustering and/or targeting.  相似文献   

18.
In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.  相似文献   

19.
20.
A(2A) adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A(2A) adenosine receptors are regulated by D(2) dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A(2A) adenosine receptor functional responses caused by the chronic blockade/activation of D(2) dopamine receptors should be considered to optimise the therapeutic effectiveness of dopaminergic agents and to reduce any possible side effects. In the present paper, we investigated the regulation of A(2A) adenosine receptors induced by antipsychotic drugs, commonly acting as D(2) dopamine receptor antagonists, in a cellular model co-expressing both A(2A) and D(2) receptors. Our data suggest that the treatment of cells with the classical antipsychotic haloperidol increased both the affinity and responsiveness of the A(2A) receptor and also affected the degree of A(2A)-D(2) receptor heterodimerisation. In contrast, an atypical antipsychotic, clozapine, had no effect on A(2A) adenosine receptor parameters, suggesting that the two classes of drugs have different effects on adenosine-dopamine receptor interaction. Modifications to A(2A) adenosine receptors may play a significant role in determining cerebral adenosine effects during the chronic administration of antipsychotics in psychiatric diseases and may account for the efficacy of A(2A) adenosine receptor ligands in pathologies associated with dopaminergic system dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9201-z) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号