首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A time-varying distributed H system is a splicing system which has the following feature: at different moments one uses different sets of splicing rules. The number of these sets is called the degree of the system. The passing from a set of rules to another one is specified in a cycle. It is a well known fact that any formal language can be generated by a time-varying distributed H-system of degree at least 7. Here we prove that there are universal time-varying distributed H-systems of degree 2. The question of whether or not there are universal time-varying distributed H-systems of degree 1 remains open.  相似文献   

2.
A formal model of an artificial immune system   总被引:20,自引:0,他引:20  
Tarakanov A  Dasgupta D 《Bio Systems》2000,55(1-3):151-158
The paper presents a mathematical model based on the features of antigen-antibody bindings in the immune system. In the natural immune system, local binding of immune cells and molecules to antigenic peptides is based generally on the behavior of surface proteins. In particular, immune cells contain proteins on their receptors, and apparently, these proteins play the key role both in immune response and recognition processes. In this work, we consider the immune cells in the form of formal B-cell and formal T-cell and develop a mathematical model of their interactions. We refer this model as the formal immune system (FIS). The paper provides an analysis of a network of bindings (or interactions) among the formal proteins of the FIS.  相似文献   

3.
We welcome Dr Thorpe's interesting discussion (Thorpe, 1988), and we would like to take this opportunity to clarify some points.
Both MGPCA (multiple group principal component analysis) and CPCA (common principal component analysis) serve essentially the same purpose, namely estimation of principal components simultaneously in several groups, based on the assumption of equality of principal component directions across groups, while eigenvalues may differ between groups. However, CPCA has the distinct advantage that this assumption can actually be tested, using the (CPC) statistic. In analyses involving more than two variables, it is usually difficult to decide, without a formal test, whether or not the assumption of common directions of principal components is reasonable.
There is also a conceptual difficulty with MGPCA. In statistical terms, both methods assume that:
(a) a certain set of parameters (namely those determining the eigenvectors) are common to all groups
(b) there are sets of parameters (namely p eigenvalues per group) which are specific to each group.
CPCA sets up a model that reflects this structure and estimates the parameters accordingly. MGPCA, on the other hand, ignores part (b), at least temporarily, by pooling the variance-covariance matrices and extracting eigenvectors from the single pooled matrix. This may lead to reasonable results, but there is no guarantee that it will indeed do so. The reader may find a more familiar analog in the fitting of regression lines when data are in groups. If it is assumed that all regression lines are parallel, one should set up an appropriate model based on a single slope parameter common to all groups, and groupwise intercepts. One should then estimate the parameters of this model, and not simply apply a technique which is appropriate in the one-group case only.  相似文献   

4.
The success of some Just In Time (JIT) systems has led to a growing interest in Kanban systems, which provide a way to implement a JIT control policy. Much work has recently been devoted to this problem, and especially many models have been developed to evaluate the performance of such systems. In this article, we focus our attention of these existing models. Each author uses his/her own representation, which is not formal in most cases, and so it is often difficult to understand the proposed model and to compare it with others. In this article, we show that Petri nets are well suited to provide a unified modeling of Kanban systems. We first propose a basic model, then show that most models encountered in the literature can easily be represented by a Petri net model. Once such a formal model is obtained, it can then be used to analyze the behavior of the system, both qualitatively and quantitatively. Some preliminary results pertaining to the quantitative analysis are presented at the end of the article.  相似文献   

5.
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.  相似文献   

6.
Wang YG  Chen Z  Liu J 《Biometrics》2004,60(2):556-561
Nahhas, Wolfe, and Chen (2002, Biometrics58, 964-971) considered optimal set size for ranked set sampling (RSS) with fixed operational costs. This framework can be very useful in practice to determine whether RSS is beneficial and to obtain the optimal set size that minimizes the variance of the population estimator for a fixed total cost. In this article, we propose a scheme of general RSS in which more than one observation can be taken from each ranked set. This is shown to be more cost-effective in some cases when the cost of ranking is not so small. We demonstrate using the example in Nahhas, Wolfe, and Chen (2002, Biometrics58, 964-971), by taking two or more observations from one set even with the optimal set size from the RSS design can be more beneficial.  相似文献   

7.
During an infection, HIV experiences strong selection by immune system T cells. Recent experimental work has shown that MHC escape mutations form an important pathway for HIV to avoid such selection. In this paper, we study a model of MHC escape mutation. The model is a predator–prey model with two prey, composed of two HIV variants, and one predator, the immune system CD8 cells. We assume that one HIV variant is visible to CD8 cells and one is not. The model takes the form of a system of stochastic differential equations. Motivated by well-known results concerning the short life-cycle of HIV intrahost, we assume that HIV population dynamics occur on a faster time scale then CD8 population dynamics. This separation of time scales allows us to analyze our model using an asymptotic approach. Using this model we study the impact of an MHC escape mutation on the population dynamics and genetic evolution of the intrahost HIV population. From the perspective of population dynamics, we show that the competition between the visible and invisible HIV variants can reach steady states in which either a single variant exists or in which coexistence occurs depending on the parameter regime. We show that in some parameter regimes the end state of the system is stochastic. From a genetics perspective, we study the impact of the population dynamics on the lineages of an HIV sample taken after an escape mutation occurs. We show that the lineages go through severe bottlenecks and that in certain parameter regimes the lineage distribution can be characterized by a Kingman coalescent. Our results depend on methods from diffusion theory and coalescent theory.  相似文献   

8.
The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that were originally developed for non-biological system design. One is the inter-object approach using the language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the simulations were consistent with the set of experimental LSCs. This small-scale modular example demonstrates the potential for using similar approaches for verification by exhaustive testing of models by LSCs. It also shows the advantages of these approaches for modeling biology.  相似文献   

9.
《Bio Systems》2009,95(3):285-289
Using fuzzy set theory, we created a system, that assesses a herb's usefulness for the treatment of tuberculosis, based on ethnobotanical data. We analysed two systems which contain different amount of inputs. The first system contains four inputs, the second one contains six inputs. We used the Takagi–Sugeno–Kanga model. Mamdani model is poor at representation as it needs more fuzzy rules than that of TSK to model a real world system where accuracy is demanded.It has been employed a fuzzy controller, and a fuzzy model, in successfully solving difficult control and modelling problems in practice. It is implemented in the Fuzzy Logic Toolbox in Matlab.The data for inputs are gathered in the database named SOPAT (selection of plants against tuberculosis), which is part of a project coordinated by the Oxford International Biomedical Centre. In this database there could be up to one millon plant species. It would be cumbersome to select a remedy from one (or some) of these species looking at the data base one-by-one. By means of the fuzzy set theory this remedy can be chosen very quickly.  相似文献   

10.
Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community.  相似文献   

11.
Using fuzzy set theory, we created a system, that assesses a herb's usefulness for the treatment of tuberculosis, based on ethnobotanical data. We analysed two systems which contain different amount of inputs. The first system contains four inputs, the second one contains six inputs. We used the Takagi-Sugeno-Kanga model. Mamdani model is poor at representation as it needs more fuzzy rules than that of TSK to model a real world system where accuracy is demanded. It has been employed a fuzzy controller, and a fuzzy model, in successfully solving difficult control and modelling problems in practice. It is implemented in the Fuzzy Logic Toolbox in Matlab. The data for inputs are gathered in the database named SOPAT (selection of plants against tuberculosis), which is part of a project coordinated by the Oxford International Biomedical Centre. In this database there could be up to one million plant species. It would be cumbersome to select a remedy from one (or some) of these species looking at the data base one-by-one. By means of the fuzzy set theory this remedy can be chosen very quickly.  相似文献   

12.
It is widely believed that stem cells are of special importance for colorectal cancer initiation. The earliest event being the inactivation of both alleles of the Adenomatous Polyposis Coli (APC) gene, it is thought that the stem cells are the most likely target for these two ?rst hits. Indeed, at the ?rst glance, short-lived differentiated cells cannot sustain a mutation longenough for the second hit to occur, because of the constantapoptosis/renewal process in epithelial tissues. Using a straightforward calculation, we show that this intuitive argument is incorrect.Our model basedon the conventional view of colon cryptarchitecture, suggests thatat least one ofthe two hits mayoccur in the migrating compartment. We suggest that a possible role of differentiating cells in cancer initiation cannot be discarded simply based on the fact that theyare short–lived. More evidence is neededto understandthe cellular origins of cancer and to identify whether or not a double hit in a daughter cell can be “immortalizing”. In this study we discuss several scenarios and propose some experiments which can shed light on these questions.  相似文献   

13.
In this paper we introduce a mathematical model of naming games. Naming games have been widely used within research on the origins and evolution of language. Despite the many interesting empirical results these studies have produced, most of this research lacks a formal elucidating theory. In this paper we show how a population of agents can reach linguistic consensus, i.e. learn to use one common language to communicate with one another. Our approach differs from existing formal work in two important ways: one, we relax the too strong assumption that an agent samples infinitely often during each time interval. This assumption is usually made to guarantee convergence of an empirical learning process to a deterministic dynamical system. Two, we provide a proof that under these new realistic conditions, our model converges to a common language for the entire population of agents. Finally the model is experimentally validated.  相似文献   

14.
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.  相似文献   

15.
The evolutionary dynamics of grammar acquisition   总被引:3,自引:0,他引:3  
Grammar is the computational system of language. It is a set of rules that specifies how to construct sentences out of words. Grammar is the basis of the unlimited expressibility of human language. Children acquire the grammar of their native language without formal education simply by hearing a number of sample sentences. Children could not solve this learning task if they did not have some pre-formed expectations. In other words, children have to evaluate the sample sentences and choose one grammar out of a limited set of candidate grammars. The restricted search space and the mechanism which allows to evaluate the sample sentences is called universal grammar. Universal grammar cannot be learned; it must be in place when the learning process starts. In this paper, we design a mathematical theory that places the problem of language acquisition into an evolutionary context. We formulate equations for the population dynamics of communication and grammar learning. We ask how accurate children have to learn the grammar of their parents' language for a population of individuals to evolve and maintain a coherent grammatical system. It turns out that there is a maximum error tolerance for which a predominant grammar is stable. We calculate the maximum size of the search space that is compatible with coherent communication in a population. Thus, we specify the conditions for the evolution of universal grammar.  相似文献   

16.
Decisions by uncommitted cells to differentiate down one lineage pathway or another is fundamental to developmental biology. In the immune system, lymphocyte precursors commit to T- or B-cell lineages and T-cell precursors to CD4 or CD8 independently of foreign antigen. T and B cells must also decide whether or not to respond to antigen and when a response is initiated, what sort of response to make such as the type of antibody, CD4 or CD8, and CD4 Th1 or Th2. The two basic mechanisms for these decision-making processes are selection and instruction. Selection depends on prior stochastic production of precommitted cells, which are then selected to respond by an appropriate signal; for example, CD8 and CD4 responses selected by peptide presented in association with major histocompatibility complex class I or II. In contrast, instruction occurs when an uncommitted precursor embarks upon a differentiation pathway in response to a particular set of signals; for example, Th1 and Th2 lineage commitment. In this paper, the signals that determine Th1 and Th2 differentiation are examined with a mathematical model and shown to act as a bistable switch permitting either Tbet or Gata3 to be expressed in an individual cell but not both. The model is used to show how the Tbet Gata3 network within an individual cell interacts with cytokine signals between cells and suggests how Th1 and Th2 lineage commitment can become irreversible. These considerations provide an example of how mathematical models can be used to gain a better understanding of lymphocyte differentiation in an immune response.  相似文献   

17.
Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive evidence in favor of either, and recent work has attempted to integrate the two types into a single model. In this paper, we address the formal issue in relation to motifs as patterns. This is essential to get at a better understanding of motifs in general. In particular, we consider a promising idea that was recently proposed, which attempted to avoid the combinatorial explosion in the number of motifs by means of a generator set for the motifs. Instead of exhibiting a complete list of motifs satisfying some input constraints, what is produced is a basis of such motifs from which all the other ones can be generated. We study the computational cost of determining such a basis of repeated motifs with wild cards in a sequence. We give new upper and lower bounds on such a cost, introducing a notion of basis that is provably contained in (and, thus, smaller) than previously defined ones. Our basis can be computed in less time and space, and is still able to generate the same set of motifs. We also prove that the number of motifs in all bases defined so far grows exponentially with the quorum, that is, with the minimal number of times a motif must appear in a sequence, something unnoticed in previous work. We show that there is no hope to efficiently compute such bases unless the quorum is fixed.  相似文献   

18.
When modeling survival data, it is common to assume that the (log-transformed) survival time (T) is conditionally independent of the (log-transformed) censoring time (C) given a set of covariates. There are numerous situations in which this assumption is not realistic, and a number of correction procedures have been developed for different models. However, in most cases, either some prior knowledge about the association between T and C is required, or some auxiliary information or data is/are supposed to be available. When this is not the case, the application of many existing methods turns out to be limited. The goal of this paper is to overcome this problem by developing a flexible parametric model, that is a type of transformed linear model. We show that the association between T and C is identifiable in this model. The performance of the proposed method is investigated both in an asymptotic way and through finite sample simulations. We also develop a formal goodness-of-fit test approach to assess the quality of the fitted model. Finally, the approach is applied to data coming from a study on liver transplants.  相似文献   

19.
The relationships between neural activity at the single-cell and the population levels are of central importance for understanding neural codes. In many sensory systems, collective behaviors in large cell groups can be described by pairwise spike correlations. Here, we test whether in a highly specialized premotor system of songbirds, pairwise spike correlations themselves can be seen as a simple corollary of an underlying random process. We test hypotheses on connectivity and network dynamics in the motor pathway of zebra finches using a high-level population model that is independent of detailed single-neuron properties. We assume that neural population activity evolves along a finite set of states during singing, and that during sleep population activity randomly switches back and forth between song states and a single resting state. Individual spike trains are generated by associating with each of the population states a particular firing mode, such as bursting or tonic firing. With an overall modification of one or two simple control parameters, the Markov model is able to reproduce observed firing statistics and spike correlations in different neuron types and behavioral states. Our results suggest that song- and sleep-related firing patterns are identical on short time scales and result from random sampling of a unique underlying theme. The efficiency of our population model may apply also to other neural systems in which population hypotheses can be tested on recordings from small neuron groups.  相似文献   

20.
Ordinary differential equation models in biology often contain a large number of parameters that must be determined from measurements by parameter estimation. For a parameter estimation procedure to be successful, there must be a unique set of parameters that can have produced the measured data. This is not the case if a model is not uniquely structurally identifiable with the given set of outputs selected as measurements. In designing an experiment for the purpose of parameter estimation, given a set of feasible but resource-consuming measurements, it is useful to know which ones must be included in order to obtain an identifiable system, or whether the system is unidentifiable from the feasible measurement set. We have developed an algorithm that, from a user-provided set of variables and parameters or functions of them assumed to be measurable or known, determines all subsets that when used as outputs give a locally structurally identifiable system and are such that any output set for which the system is structurally identifiable must contain at least one of the calculated subsets. The algorithm has been implemented in Mathematica and shown to be feasible and efficient. We have successfully applied it in the analysis of large signalling pathway models from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号