首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Escherichia coli mutants defective in the assimilation of iron from ferrienterochelin were isolated and characterized. One mutant was able to bind ferrienterochelin to its outer membrane but could not transport it into the cell. Complementation tests with lambda hybrid phage were employed to distinguish the defective gene, which we term fepB, from fepA, the structural gene for the outer membrane ferrienterochelin receptor protein. These same physiological and genetic tests were employed to tentatively classify several previously described fep mutants as carrying either fepA or fepB. The data demonstrate the existence of fepB and provide an explanation for previous difficulties in identifying fepB mutants.  相似文献   

3.
Spheroplasts of Escherichia coli mutants were used to investigate the roles of the inner and outer membranes in the transport of iron. tonA mutants, known to be defective in an outer membrane component of the ferrichrome transport system, regained the ability to transport ferrichrome when converted to spheroplasts. On the other hand, the tonB mutant was unable to transport ferric enterochelin in either whole cells or spheroplasts. This implies that an element of the inner membrane is affected. fep mutants were also unable to transport ferric enterochelin, and fell into two classes, fepA and fepB. Spheroplasts of the former class transported ferric enterochelin, and those of the latter did not. This implies that the fepA mutants are defective in ferric enterochelin transport across the outer membrane, and that fepB mutants probably lack the facility to transport ferric enterochelin across the inner membrane. Colicin B action on fepA mutants was found to differ from that on fepB mutants.  相似文献   

4.
5.
Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.  相似文献   

6.
Transposon mutagenesis and plasmid complementation studies have identified two genes, fepD and fepG, which are essential for ferrienterobactin transport in Escherichia coli. These genes mapped in the enterobactin gene cluster and genetic evidence indicated that they are transcribed as part of an operon (fepD, fepG, fepC). The nucleotide sequence of fepD was determine; it could encode a hydrophobic 33.8 kDa protein with sequence homologies to other iron and vitamin B12 transport proteins. Also identified, between fepD and fepB, was an open reading frame (ORF43) with no detectable function; its 43 kDa protein product (P43) was seen on polyacrylamide gels. The fepD-C operon and ORF43 were divergently transcribed from a 110bp region containing a binding site for the repressor protein Fur.  相似文献   

7.
Catecholamines may stimulate enteric bacteria including the foodborne pathogen Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by two mechanisms in vivo: as a quorum sensing signal and a supplier of iron. To identify genes of Salmonella Typhimurium that respond to norepinephrine, transposon mutagenesis and DNA microarray analysis were performed. Insertional mutations in the following genes decreased norepinephrine-enhanced growth: degS, entE, entF, fes, gpmA, hfq, STM3846. DNA microarray and real-time RT-PCR analyses revealed a decrease in the expression of several genes involved in iron acquisition and utilization during norepinephrine exposure, signifying the iron-limiting conditions of serum-SAPI minimal medium and the siderophore-like activity of norepinephrine. Unlike the wild-type parent strain, growth of neither a fepA iroN cirA mutant nor a fepC mutant, harboring deletional mutations in the outer and inner membrane transporters of enterochelin, respectively, was enhanced by norepinephrine. However, growth of the fepC and the fepA iroN cirA mutants could be rescued by an alternative siderophore, ferrioxamine E, further validating the role of norepinephrine in supplying the organism with iron via the catecholate-specific iron transport system. Contrary to previous reports using small animal models, the fepA iroN cirA mutant of Salmonella Typhimurium colonized the swine gastrointestinal tract, as did the fepC mutant.  相似文献   

8.
9.
Mutations Affecting Iron Transport in Escherichia coli   总被引:14,自引:20,他引:14       下载免费PDF全文
A mutant of Escherichia coli K-12 unable to form an essential component of the enterochelin-dependent iron transport system has been isolated. This strain carries a mutation in a gene designated fep, mapping close to two genes, entA and entD, concerned with enterochelin synthesis. Strain AN102, which carries the fep(-) allele, accumulates large quantities of enterochelin and gives a growth response to sodium citrate. The cytochrome b(1) and total iron content, and the measurement of the uptake of (55)Fe(3+), indicate an impairment of the enterochelin-dependent iron transport system. The growth response to sodium citrate is related to the presence, in strain AN102, of an inducible citrate-dependent iron transport system.  相似文献   

10.
11.
12.
M Kammler  C Schn    K Hantke 《Journal of bacteriology》1993,175(19):6212-6219
Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. Cloning and sequencing of the iron(II) transport genes revealed an open reading frame (feoA) possibly coding for a small protein with 75 amino acids and a membrane protein with 773 amino acids (feoB). The upstream region of feoAB contained a binding site for the regulatory protein Fur, which acts with iron(II) as a corepressor in all known iron transport systems of E. coli. In addition, a Fnr binding site was identified in the promoter region. The FeoB protein had an apparent molecular mass of 70 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was localized in the cytoplasmic membrane. The sequence revealed regions of homology to ATPases, which indicates that ferrous iron uptake may be ATP driven. FeoA or FeoB mutants could be complemented by clones with the feoA or feoB gene, respectively.  相似文献   

13.
14.
15.
Abstract The plasmid pMS101 carries Escherichia coli K-12 genes ( entD, fes, entF ) essential for enterochelin-mediated iron transport [Laird, A.J. and Young, I.G., Gene 11 (1980) 359–366]. We have further characterized pMS101 and shown that it also contains the gene ( fepA ) for the 81 000 Da outer membrane ferrienterochelin receptor. Subcloning experiments in conjunction with complementation and maxicell studies demonstrated the gene order to be entD fepA fes entF . The entF - and fes -encoded polypeptides were found to be 115 000 and 42 000-Da soluble proteins, respectively. Plasmid-borne enterochelin cluster genes were overexpressed in iron-deficient conditions and their products were undetectable under iron-replete conditions.  相似文献   

16.
Abstract The cloned afu locus of Actinobacillus pleuropneumoniae restored the ability of an Escherichia coli K-12 mutant ( aroB ) to grow on iron-limited media. DNA sequence analysis of the fragment showed that there are three genes designated afuA, afuB and afuC (Actinobacillus ferric uptake) that encode products similar to the SfuABC proteins of Serratia marcescens , the HitABC proteins of Haemophilia influenzae , the FbpABC proteins of Neisseria gonorrhoeae and the YfuABC proteins of Yersinia enterocolitica . The three genes encode a periplasmic iron-binding protein (AfuA), a highly hydrophobic integral cytoplasmic membrane protein with two consensus permease motifs (AfuB) and one hydrophilic peripheral cytoplasmic membrane protein with Walker ATP-binding motifs (AfuC), respectively. This system has been shown to constitute a periplasmic binding protein-dependent iron transport system in these organisms. The afuABC operon is locating approximately 200 bp upstream of apxIC gene, but transcribed in opposite direction to the ApxI-toxin genes.  相似文献   

17.
A new osmotically inducible gene in Escherichia coli, osmY, was induced 8- to 10-fold by hyperosmotic stress and 2- to 3-fold by growth in complex medium. The osmY gene product is a periplasmic protein which migrates with an apparent molecular mass of 22 kDa on sodium dodecyl sulfate-polyacrylamide gels. A genetic fusion to osmY was mapped to 99.3 min on the E. coli chromosome. The gene was cloned and sequenced, and an open reading frame was identified. The open reading frame encoded a precursor protein with a calculated molecular weight of 21,090 and a mature protein of 18,150 following signal peptide cleavage. Sequencing of the periplasmic OsmY protein confirmed the open reading frame and defined the signal peptide cleavage site as Ala-Glu. A mutation caused by the osmY::TnphoA genetic fusion resulted in slightly increased sensitivity to hyperosmotic stress.  相似文献   

18.
Biochemical analysis of spontaneous fepA mutants of Escherichia coli   总被引:11,自引:0,他引:11  
The fepA gene of Escherichia coli encodes the outer-membrane receptor protein for ferrienterobactin. Previous genetic studies indicated that fepA mutations occur frequently and suggested that most of the mutations were deletions. In this work seven spontaneous fepA mutations were analyzed by enzyme assay (enterobactin synthase and enterobactin esterase) and by DNA hybridization studies. In two strains, UT500 and UT700, the mutations were confined to the fepA gene. In the remaining mutants, the mutations were large deletions; in several cases, 27 kb or more of DNA had been lost. The deletions, all of which eliminated approximately the left half of the enterobactin gene cluster, extended from the vicinity of the fepC gene counterclockwise into the chromosome. A minimum of three clockwise endpoints were identified and at least two counterclockwise endpoints were detected. The variation in endpoints among the deletions argues against the involvement of a normal transposon in their formation. Also, unexpected homology was found between enterobactin gene cluster DNA and lacPOZ and pSC101.  相似文献   

19.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号