首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In frog retina there are special rod photoreceptor cells ('green rods') with physiological properties similar to those of typical vertebrate rods ('red rods'). A cDNA fragment encoding the putative green rod visual pigment was isolated from a retinal cDNA library of the bullfrog, Rana catesbeiana. Its deduced amino acid sequence has more than 65% identity with those of blue-sensitive cone pigments such as chicken blue and goldfish blue. Antisera raised against its C-terminal amino acid sequence recognized green rods. It is concluded that bullfrog green rods contain a visual pigment which is closely related to the blue-sensitive cone pigments of other non-mammalian vertebrates.  相似文献   

2.
Phosphorylation of iodopsin, chicken red-sensitive cone visual pigment   总被引:1,自引:0,他引:1  
The amino acid sequence has been determined for the carboxyl-terminal 41 amino acids of chicken red-sensitive cone pigment, iodopsin. This sequence is distinct from but structurally homologous to that of other visual pigments. It contains a region rich in the hydroxy amino acids serine and threonine. In the related rod cell visual pigment, rhodopsin, such serines and threonines have previously been identified as sites for phosphorylation by rhodopsin kinase. Phosphorylation of photolyzed rhodopsin serves to terminate its ability to function in visual transduction as an activator of G-protein. We have purified and reconstituted both chicken rhodopsin and chicken iodopsin and shown them to be phosphorylated by bovine rhodopsin kinase. Chicken iodopsin has a Km and Vmax similar to but distinguishably different from that for bovine rhodopsin. These results, in conjunction with other data, suggest that visual pigments in cone cells, upon absorption of light, undergo functional processes similar to those of the visual pigments in rod cells.  相似文献   

3.
The chicken has four kinds of color visual pigments, in addition to rhodopsin. A chicken genomic DNA library was screened with cDNA of human red-sensitive pigment and a chicken genomic DNA fragment including rhodopsin exons 2, 3 and 4, and then a genomic DNA fragment encoding a visual pigment, possibly an iodopsin, was cloned. A cDNA library, constructed from chicken retina mRNA, was screened with the genomic DNA fragment and the cDNA of human red-sensitive pigment, and the cDNA encoding the pigment was cloned. The nucleotide sequence of this cDNA was similar to that of the human red-sensitive pigment, with identities of 78% for the nucleotide sequence and 84% for the amino acid sequence with human red-sensitive pigment.  相似文献   

4.
Sato K  Yamashita T  Imamoto Y  Shichida Y 《Biochemistry》2012,51(21):4300-4308
Visual pigments in rod and cone photoreceptor cells of vertebrate retinas are highly diversified photoreceptive proteins that consist of a protein moiety opsin and a light-absorbing chromophore 11-cis-retinal. There are four types of cone visual pigments and a single type of rod visual pigment. The reaction process of the rod visual pigment, rhodopsin, has been extensively investigated, whereas there have been few studies of cone visual pigments. Here we comprehensively investigated the reaction processes of cone visual pigments on a time scale of milliseconds to minutes, using flash photolysis equipment optimized for cone visual pigment photochemistry. We used chicken violet (L-group), chicken blue (M1-group), chicken green (M2-group), and monkey green (L-group) visual pigments as representatives of the respective groups of the phylogenetic tree of cone pigments. The S, M1, and M2 pigments showed the formation of a pH-dependent mixture of meta intermediates, similar to that formed from rhodopsin. Although monkey green (L-group) also formed a mixture of meta intermediates, pH dependency of meta intermediates was not observed. However, meta intermediates of monkey green became pH dependent when the chloride ion bound to the monkey green was replaced with a nitrate ion. These results strongly suggest that rhodopsin and S, M1, and M2 cone visual pigments share a molecular mechanism for activation, whereas the L-group pigment may have a special reaction mechanism involving the chloride-binding site.  相似文献   

5.
Spectral tuning of visual pigments is typically accomplished through changes in opsin amino acid sequence. Within a given opsin class, changes at a few key sites control wavelength specificity. To investigate known differences in the visual pigment spectral sensitivity of the Lake Malawi cichlids, Metriaclima zebra (368, 488, and 533 nm) and Dimidiochromis compressiceps (447, 536, and 569 nm), we sequenced cone opsin genes from these species as well as Labeotropheus fuelleborni and Oreochromis niloticus. These cichlids have five distinct classes of cone opsin genes, including two unique SWS-2 genes. Comparisons of the inferred amino acid sequences from the five cone opsin genes of M. zebra, D. compressiceps, and L. fuelleborni show the sequences to be nearly identical. Therefore, evolution of key opsin sites cannot explain the differences in visual pigment sensitivities. Real-time PCR demonstrates that different cichlid species express different subsets of the available cone opsin genes. Metriaclima zebra and L. fuelleborni express a complement of genes which give them UV-shifted visual pigments, while D. compressiceps expresses a different set to produce a red-shifted visual system. Thus, variations in cichlid spectral sensitivity have arisen through evolution of gene regulation, rather than through changes in opsin amino acid sequence.  相似文献   

6.
Amino acid changes S180A (S-->A at site 180), H197Y, Y277F, T285A, and A308S are known to shift the maximum wavelength of absorption (lambda max) of red and green visual pigments toward blue, essentially in an additive fashion. To test the generality of this "five-sites" rule, we have determined the partial amino acid sequences of red and green pigments from five mammalian orders (Artiodactyla, Carnivora, Lagomorpha, Perissodactyla, and Rodentia). The result suggests that cat (Felis catus), dog (Canis familiaris), and goat (Capra hircus) pigments all with AHYTA at the five critical sites have lambda max values of approximately 530 nm, whereas rat (Rattus norvegicus) pigment with AYYTS has a lambda max value of approximately 510 nm, which is accurately predicted by the five-sites rule. However, the observed lambda max values of the orthologous pigments of European rabbit (Oryctolagus cuniculus), white-tailed deer (Odocoileus virginianus), gray squirrel (Sciurus carolinensis), and guinea pig (Cavia procellus) are consistently more than 10 nm higher than the predicted values, suggesting the existence of additional molecular mechanisms for red and green color vision. The inferred amino acid sequences of ancestral organisms suggest that the extant mammalian red and green pigments appear to have evolved from a single ancestral green-red hybrid pigment by directed amino acid substitutions.   相似文献   

7.
Vertebrate retinas have two types of photoreceptor cells, rods and cones, which contain visual pigments with different molecular properties. These pigments diverged from a common ancestor, and their difference in molecular properties originates from the difference in their amino acid residues. We previously reported that the difference in decay times of G protein-activating meta-II intermediates between the chicken rhodopsin and green-sensitive cone (chicken green) pigments is about 50 times. This difference only originates from the differences of two residues at positions 122 and 189 (Kuwayama, S., Imai, H., Hirano, T., Terakita, A., and Shichida, Y. (2002) Biochemistry 41, 15245-15252). Here we show that the meta-III intermediates exhibit about 700 times difference in decay times between the two pigments, and the faster decay in chicken green can be converted to the slower decay in rhodopsin by replacing the residues in chicken green with the corresponding rhodopsin residues. However, the inverse directional conversion did not occur when the two residues in rhodopsin were replaced by those of chicken green. Analysis using chimerical mutants derived from these pigments has demonstrated that amino acid residues responsible for the slow rhodopsin meta-III decay are situated at several positions throughout the C-terminal half of rhodopsin. Considering that rhodopsins evolved from cone pigments, it has been suggested that the molecular properties of rhodopsin have been optimized by mutations at several positions, and the chicken green mutants at two positions could be rhodopsin-like pigments transiently produced in the course of molecular evolution.  相似文献   

8.
D D Oprian  A B Asenjo  N Lee  S L Pelletier 《Biochemistry》1991,30(48):11367-11372
Color vision in humans is mediated by three pigments from retinal cone photoreceptor cells: blue, green, and red. We have designed and chemically synthesized genes for each of these three pigments. The genes were expressed in COS cells, reconstituted with 11-cis-retinal chromophore, and purified to homogeneity using an immunoaffinity procedure. To facilitate the immunoaffinity purification, each pigment was modified at the carboxy terminus to contain an additional eight amino acid epitope for a monoclonal antibody previously used to purify bovine rhodopsin. The spectra for the isolated pigments had maxima of 424, 530, and 560 nm, respectively, for the blue, green, and red pigments. These maxima are in excellent agreement with the maxima previously observed by microspectrophotometry of individual human cone cells. The spectra are the first to be obtained from isolated human color vision pigments. They confirm the original identification of the three color vision genes, which was based on genetic evidence [Nathans, J., Thomas, D., & Hogness, D.S. (1986) Science 232, 193].  相似文献   

9.
J Nathans 《Biochemistry》1990,29(4):937-942
I have investigated the effect on bovine rhodopsin's absorbance spectrum of charged amino acid changes in the putative membrane-spanning regions. A total of 14 site-directed mutants were constructed at 6 amino acid positions: 83, 86, 122, 134, 135, and 211. Two of these positions are occupied by charged amino acids that are conserved in all four human visual pigments (positions 134 and 135). In the four variable positions, single and double mutants were constructed to reproduce the intramembrane distribution of charged amino acids predicted for each human cone pigment. Following solubilization in digitonin and reconstitution with 11-cis-retinal, the photobleaching difference spectrum of each pigment was determined in the presence of hydroxylamine. The absorbance spectra of the mutant pigments are all surprisingly close to that of native bovine rhodopsin (lambda max = 498 nm), ruling out a significant role for these residues in spectral tuning.  相似文献   

10.
Kuwayama S  Imai H  Hirano T  Terakita A  Shichida Y 《Biochemistry》2002,41(51):15245-15252
To identify the amino acid residue(s) responsible for the difference in the molecular properties between rod and cone pigments, we have prepared chicken green mutants where each of the residues (Val77, Gly144, and Pro189) completely conserved in the cone pigments was replaced with the residue in the rod pigment rhodopsin. Among the mutants, the P189I mutant showed an expression level in cultured HEK293 cells and a thermal stability higher than did the wild-type chicken green. The mutation caused a reduced decay rate of the meta II intermediate, while the mutation of the wild-type chicken rhodopsin at position 189 (I189P) resulted in an increased decay rate. The additional mutation at position 122, the previously reported site where the amino acid residue is one of the determinants of the meta II decay rate, converted the meta II decay rate into that observed in the wild-type chicken rhodopsin. These results suggest that the difference in the meta II decay rate between the chicken green and rhodopsin is due to the difference in the amino acid residues at positions 189 and 122. The completely conserved nature of proline at position 189 could provide a clue to the molecular evolution of the pigments.  相似文献   

11.
Amplified fragments encoding exon-4 of opsin cDNAs were cloned from the retina of landlocked ayu (Plecoglossus altivelis), and sequenced. On the basis of the sequence homology to previously characterized fish visual pigments, one clone was identified as rod opsin (AYU-Rh), and two clones as green (AYU-G1, -G2), one as red (AYU-R) and two as ultraviolet (AYU-UV1, -UV2) cone opsins. The 335-amino acid sequence deduced from the full-length cDNA of AYU-Rh included residues highly conserved in vertebrate rhodopsins and showed the greatest degree (88%) of similarity with salmon rhodopsin. Southern blotting analysis indicated that ayu possess two rhodopsin genes, one encoding visual rhodopsin (AYU-Rh) and the other non-visual extra-ocular rhodopsin (AYU-ExoRh). RT-PCR experiments revealed that AYU-Rh was expressed in the retina and AYU-ExoRh in the pineal gland. In situ hybridization experiments showed that the mRNA of AYU-Rh was localized only in rod cells not in cone cells. Lake and river type landlocked ayu having different amounts of retinal and 3-hydroxyretinal in their retinas expressed a rhodopsin (AYU-Rh) of identical amino acid sequence.  相似文献   

12.
Comparisons of the deduced amino acid sequences of eight primate photopigment genes led to the proposal that three amino acid substitutions produce the approximately 1,000 cm-1 difference in the absorption maxima of human red and green pigments (Neitz, M., Neitz, J., and Jacobs, G.H. (1991) Science 252, 971-974). We tested this proposal by mutating these three residues in rhodopsin and evaluating the effects on spectral properties. Nonpolar residues normally present in rhodopsin and in the green pigment were substituted by hydroxyl-bearing residues normally present in the red pigment. Two of these substitutions (Phe-261 to Tyr or Ala-269 to Thr) caused significant red shifts in the absorption maxima of the resulting mutant pigments. A third substitution (Ala-164 to Ser) caused only a slight effect. Combinations of substitutions caused additive shifts in absorption maxima. A double mutant (Phe-261 to Tyr/Ala-269 to Thr) displayed an absorption maximum that was red-shifted by 775 cm-1. Wavelength modulation in the visual pigments responsible for red-green color vision is likely to be governed by retinal-protein interactions involving primarily these two amino acid residues. Furthermore, interactions of hydroxyl-bearing amino acids with the chromophore may be a general mechanism of the opsin shift in visual pigments.  相似文献   

13.
Molecular evolution of human visual pigment genes   总被引:9,自引:1,他引:8  
By comparing the published DNA sequences for (a) the genes encoding the human visual color pigments (red, green, and blue) with (b) the genes encoding human, bovine, and Drosophila rhodopsins, a phylogenetic tree for the mammalian pigment genes has been constructed. This evolutionary tree shows that the common ancestor of the visual color pigment genes diverged first from that of the rhodopsin genes; then the common ancestor of the red and green pigment genes and the ancestor of the blue pigment gene diverged; and finally the red and green pigment genes diverged from each other much more recently. Nucleotide substitutions in the rhodopsin genes are best explained by the neutral theory of molecular evolution. However, important functional adaptations seem to have occurred twice during the evolution of the color pigment genes in humans: first, to the common ancestor of the three color pigment genes after its divergence from the ancestor of the rhodopsin gene and, second, to the ancestor of the red pigment gene after its divergence from that of the green pigment gene.  相似文献   

14.
Purification of cone visual pigments from chicken retina   总被引:5,自引:0,他引:5  
A novel method for purification of chicken cone visual pigments was established by use of a 3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate-phosphatidylcholine (CHAPS-PC) mixture. Outer segment membranes isolated from chicken retinas were extracted with 0.75% CHAPS supplemented with 1.0 mg/mL phosphatidylcholine (CHAPS-PC system). After the extract was diluted to 0.6% CHAPS, it was loaded on a concanavalin A-Sepharose column. Elution from the column with different concentrations of methyl alpha-mannoside yielded three fractions: the first was composed of chicken violet, blue, and red in roughly equal amounts, the second predominantly contained chicken red, and the third was rhodopsin with a small amount of chicken green, which was separated from rhodopsin by DEAE-Sepharose column chromatography. Since CHAPS has little absorbance at both ultraviolet and visible regions, we could demonstrate the absolute absorption spectra of chicken red (92%) and rhodopsin (greater than 96%) in these regions. The maximum of the difference spectrum between either chicken red or rhodopsin and its photoproduct (all-trans-retinal oxime plus opsin) was determined to be 571 or 503 nm, respectively. Although chicken green was contaminated with a small amount of rhodopsin having a similar spectral shape, the maximum of its difference spectrum was located at 508 nm by taking advantage of the difference in susceptibility against hydroxylamine between these pigments. Although chicken blue and chicken violet were minor pigments present in the first fraction from the concanavalin A column, their maxima in the difference spectra were determined to be at 455 and 425 nm, respectively, by a partial bleaching method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pinopsin is a chicken pineal photoreceptive molecule with a possible role in photoentrainment of the circadian clock. Sequence comparison among members of the rhodopsin family has suggested that pinopsin might have properties more similar to cone visual pigments than to rhodopsin, but the lifetime of the physiologically active intermediate (meta II) of pinopsin is rather similar to that of metarhodopsin II, which is far more stable than meta II intermediates of cone visual pigments [Nakamura, A. et al., (1999) Biochemistry 38, 14738-14745]. In the present study, we investigated the amino acid residue(s) contributing to this unique property of pinopsin by using site-directed mutagenesis to pinopsin-specific structural features, (i) Ser171, (ii) Asn184, and (iii) the second extracellular loop two-amino acids shorter than that of cone visual pigments. The meta II stability of the 171/184 double mutant of pinopsin (S171R/N184D) is almost the same as that of wild-type pinopsin. In contrast, the meta II lifetime is markedly shortened (one third) by introduction of the third mutation (replacement of a six-amino acid stretch, 188-193, by the corresponding eight residues of chicken green-sensitive cone pigment) to the 171/184 double mutant of pinopsin. Consistently, meta II of the green-sensitive pigment mutant, in which the eight-amino acid stretch is inversely replaced by the corresponding six residues of pinopsin, is more stable than meta II of the wild-type pigment. These results strongly suggest that the specific sequence and/or the number of residues at amino acids 188-193 in pinopsin play an important role in the stabilization of the meta II intermediate.  相似文献   

16.
Yokoyama S  Blow NS 《Gene》2001,276(1-2):117-125
We have isolated a full-length cDNA encoding a putative ultraviolet (UV)-sensitive visual pigment of the Tokay gecko (Gekko gekko). This clone has 57 and 59% sequence similarities to the gecko RH2 and MWS pigment genes, respectively, but it shows 87% similarity to the UV pigment gene of the American chameleon (Anolis carolinensis). The evolutionary rates of amino acid replacement are significantly higher in the three gecko pigments than in the corresponding chameleon pigments. The accelerated evolutionary rates reflect not only the transition from cones to rods in the retina but also the blue-shift in the absorption spectra of the gecko pigments.  相似文献   

17.
To investigate the local structure that causes the differences in molecular properties between rod and cone visual pigments, we have measured the difference infrared spectra between chicken green and its photoproduct at 77 K and compared them with those from bovine and chicken rhodopsins. In contrast to the similarity of the vibrational bands of the chromophore, those of the protein part were notably different between chicken green and the rhodopsins. Like the rhodopsins, chicken green has an aspartic acid at position 83 (D83) but exhibited no signals due to the protonated carboxyl of D83 in the C=O stretching region, suggesting that the molecular contact between D83 and G120 through water molecule evidenced in bovine rhodopsin is absent in chicken green. A pair of positive and negative bands due to the peptide backbone (amide I) was prominent in chicken green, while the rhodopsins exhibited only small bands in this region. Furthermore, chicken green exhibited characteristic paired bands around 1480 cm(-1), which were identified as the imide bands of P189 using site-directed mutagenesis. P189, situated in the putative second extracellular loop, is conserved in all the known cone visual pigments but not in rhodopsins. Thus, some region of the second extracellular loop including P189 is situated near the chromophore and changes its environment upon formation of the batho-intermediate. The results noted above indicate that differences in the protein parts between chicken green and the rhodopsins alter the changes seen in the protein upon photoisomerization of the chromophore. Some of these changes appear to be the pathway from the chromophore to cytoplasmic surface of the pigment and thus could affect the activation process of transducin.  相似文献   

18.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

19.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   

20.
We have investigated the molecular properties of rod and cone visual pigments to elucidate the differences in the molecular mechanism(s) of the photoresponses between rod and cone photoreceptor cells. We have found that the cone pigments exhibit a faster pigment regeneration and faster decay of meta-II and meta-III intermediates than the rod pigment, rhodopsin. Mutagenesis experiments have revealed that the amino acid residues at positions 122 and 189 in the opsins are the determinants for these differences. In order to study the relationship between the molecular properties of visual pigments and the physiology of rod photoreceptors, we used mouse rhodopsin as a model pigment because, by gene-targeting, the spectral properties of the pigment can be directly correlated to the physiology of the cells. In the present paper, we summarize the spectroscopic properties of cone pigments and describe our studies with mouse rhodopsin utilizing a high performance charge coupled device (CCD) spectrophotometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号