首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Orren DK  Theodore S  Machwe A 《Biochemistry》2002,41(46):13483-13488
The loss of function of WRN, a DNA helicase and exonuclease, causes the premature aging disease Werner syndrome. A hallmark feature of cells lacking WRN is genomic instability typified by elevated illegitimate recombination events and accelerated loss of telomeric sequences. In this study, the activities of WRN were examined on a displacement loop (D-loop) DNA substrate that mimics an intermediate formed during the strand invasion step of many recombinational processes. Our results indicate that this model substrate is specifically bound by WRN and efficiently disrupted by its helicase activity. In addition, the 3' end of the inserted strand of this D-loop structure is readily attacked by the 3'-->5' exonuclease function of WRN. These results indicate that D-loop structures are favored sites for WRN action. Thus, WRN may participate in DNA metabolic processes that utilize these structures, such as recombination and telomere maintenance pathways.  相似文献   

5.
Werner syndrome is a human disorder characterized by premature aging, genomic instability, and abnormal telomere metabolism. The Werner syndrome protein (WRN) is the only known member of the RecQ DNA helicase family that contains a 3' --> 5'-exonuclease. However, it is not known whether both activities coordinate in a biological pathway. Here, we describe DNA structures, forked duplexes containing telomeric repeats, that are substrates for the simultaneous action of both WRN activities. We used these substrates to study the interactions between the WRN helicase and exonuclease on a single DNA molecule. WRN helicase unwinds at the forked end of the substrate, whereas the WRN exonuclease acts at the blunt end. Progression of the WRN exonuclease is inhibited by the action of WRN helicase converting duplex DNA to single strand DNA on forks of various duplex lengths. The WRN helicase and exonuclease act in concert to remove a DNA strand from a long forked duplex that is not completely unwound by the helicase. We analyzed the simultaneous action of WRN activities on the long forked duplex in the presence of the WRN protein partners, replication protein A (RPA), and the Ku70/80 heterodimer. RPA stimulated the WRN helicase, whereas Ku stimulated the WRN exonuclease. In the presence of both RPA and Ku, the WRN helicase activity dominated the exonuclease activity.  相似文献   

6.
Poly(ADP-ribose)polymerase: a novel finger protein.   总被引:3,自引:3,他引:3       下载免费PDF全文
By Energy Dispersive X-ray fluorescence we have determined that calf thymus poly(ADP-ribose) polymerase binds two zinc ions per enzyme molecule. Using 65Zn (II) for detection of zinc binding proteins and polypeptides on western blots, we found that the zinc binding sites are localized in a 29 kd N-terminal fragment which is included in the DNA binding domain. Metal depletion and restoration experiments proved that zinc is essential for the binding of this fragment to DNA as tested by Southwestern assay. These results correlate with the existence of two putative zinc finger motifs present in the N-terminal part of the human enzyme. Poly(ADP-ribose)polymerase fingers could be involved in the recognition of DNA strand breaks and therefore in enzyme activation.  相似文献   

7.
We investigated the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53 using two different approaches. In the first approach, we used primary and immortalized cells derived from wt and PARP-1 -/- mice. We examined whether PARP-1 deficiency would affect the expression of the wild-type (wt) p53 protein. The inactivation of the PARP-1 gene markedly affected the constitutive expression of the wt p53 protein. Interestingly, only the regularly spliced form of wt p53 was reduced to a barely detectable level in consequence to an approximately 8-fold shortening of its half-life, whereas the level of alternatively spliced p53 remained unchanged. Moreover, reconstitution of cells lacking the PARP-1 gene with the human counterpart restored the normal stability of the regularly spliced p53 protein. In the second approach, we performed experiments with c-Ha-ras transformed primary rat cells overexpressing the p53135val mutant alone or in combination with PARP-1. The advantage of this temperature sensitive p53135val mutant is its oncogenic character at 37 degrees C, connected with cytoplasmic localization of p53, and its tumor suppressor activity at 32 degrees C, accompanied by p53 translocation into the nucleus. No noticeable differences in proliferation and G1 accumulationwere observed between cells expressing p53135val with or without PARP-1. On the other hand, a comparison of the recovery of G1 arrested cells after a shift up to 37 degrees C for both cell lines showed dramatic differences in the kinetics. While cells expressing p53135val rapidly reached the characteristic S-phase level after a shift up to basal temperature, cells additionally expressing PARP-1 rested in G1 despite the temperature elevation. This coincided with exclusively cytoplasmic p53 protein in cells expressing p53135val and predominantly nuclear localization of p53 in p53135val +PARP-1 cells, as evidenced by immunostaining. Determination of the p53 level during the maintenance of cells at 32 degrees C revealed a marked decrease in the level of p53 in cells expressing p53135val alone, whereas in cells coexpressing PARP-1, the level of p53 remained largely unaffected. This indicates that the stability of wild-type p53 greatly differed between both cell lines. Furthermore, the inhibition of PARP-1 activity in G1 arrested cells by 3-aminobenzamide abolished its stabilizing effect on the wild-type p53 protein. Taken together, our results indicate that PARP-1 regulates the stability of the wt p53 protein and that its enzymatic activity is necessary for this stabilizing action.  相似文献   

8.
The WRN gene, defective in the premature aging and genome instability disorder Werner syndrome, encodes a protein with DNA helicase and exonuclease activities. In this report, cofactor requirements for WRN catalytic activities were examined. WRN helicase performed optimally at an equimolar concentration (1 mm) of Mg(2+) and ATP with a K(m) of 140 microm for the ATP-Mg(2+) complex. The initial rate of WRN helicase activity displayed a hyperbolic dependence on ATP-Mg(2+) concentration. Mn(2+) and Ni(2+) substituted for Mg(2+) as a cofactor for WRN helicase, whereas Fe(2+) or Cu(2+) (10 microm) profoundly inhibited WRN unwinding in the presence of Mg(2+).Zn(2+) (100 microm) was preferred over Mg(2+) as a metal cofactor for WRN exonuclease activity and acts as a molecular switch, converting WRN from a helicase to an exonuclease. Zn(2+) strongly stimulated the exonuclease activity of a WRN exonuclease domain fragment, suggesting a Zn(2+) binding site in the WRN exonuclease domain. A fluorometric assay was used to study WRN helicase kinetics. The initial rate of unwinding increased with WRN concentration, indicating that excess enzyme over DNA substrate improved the ability of WRN to unwind the DNA substrate. Under presteady state conditions, the burst amplitude revealed a 1:1 ratio between WRN and DNA substrate, suggesting an active monomeric form of the helicase. These are the first reported kinetic parameters of a human RecQ unwinding reaction based on real time measurements, and they provide mechanistic insights into WRN-catalyzed DNA unwinding.  相似文献   

9.
A defect in the Werner syndrome protein (WRN) leads to the premature aging disease Werner syndrome (WS). Hallmark features of cells derived from WS patients include genomic instability and hypersensitivity to certain DNA-damaging agents. WRN contains a highly conserved region, the RecQ conserved domain, that plays a central role in protein interactions. We searched for proteins that bound to this region, and the most prominent direct interaction was with poly(ADP-ribose) polymerase 1 (PARP-1), a nuclear enzyme that protects the genome by responding to DNA damage and facilitating DNA repair. In pursuit of a functional interaction between WRN and PARP-1, we found that WS cells are deficient in the poly(ADP-ribosyl)ation pathway after they are treated with the DNA-damaging agents H2O2 and methyl methanesulfonate. After cellular stress, PARP-1 itself becomes activated, but the poly(ADP-ribosyl)ation of other cellular proteins is severely impaired in WS cells. Overexpression of the PARP-1 binding domain of WRN strongly inhibits the poly(ADP-ribosyl)ation activity in H2O2-treated control cell lines. These results indicate that the WRN/PARP-1 complex plays a key role in the cellular response to oxidative stress and alkylating agents, suggesting a role for these proteins in the base excision DNA repair pathway.  相似文献   

10.
11.
Single-strand breaks are the commonest lesions arising in cells, and defects in their repair are implicated in neurodegenerative disease. One of the earliest events during single-strand break repair (SSBR) is the rapid synthesis of poly(ADP-ribose) (PAR) by poly(ADP-ribose) polymerase (PARP), followed by its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). While the synthesis of poly(ADP-ribose) is important for rapid rates of chromosomal SSBR, the relative importance of poly(ADP-ribose) polymerase 1 (PARP-1) and PARP-2 and of the subsequent degradation of PAR by PARG is unclear. Here we have quantified SSBR rates in human A549 cells depleted of PARP-1, PARP-2, and PARG, both separately and in combination. We report that whereas PARP-1 is critical for rapid global rates of SSBR in human A549 cells, depletion of PARP-2 has only a minor impact, even in the presence of depleted levels of PARP-1. Moreover, we identify PARG as a novel and critical component of SSBR that accelerates this process in concert with PARP-1.  相似文献   

12.
13.
The influence of poly(ADP-ribose)polymerase 1 (PARP1) on the apurinic/apyrimidinic (AP)-site cleavage activity of tyrosyl–DNA phosphodiesterase 1 (TDP1) and interaction of PARP1 and TDP1 were studied. The efficiency of single or clustered AP-site hydrolysis catalysed by TDP1 was estimated. It was shown that the efficiency of AP-site cleavage increases in the presence of an additional AP-site in the opposite DNA strand depending on its position. PARP1 stimulates TDP1; the stimulation effect was abolished in the presence of NAD+. The interaction of these two proteins was characterized quantitatively by measuring the dissociation constant for the TDP1–PARP1 complex using fluorescently-labelled proteins. The distance between the N-termini of the proteins within the complex was estimated using FRET. The data obtained suggest that PARP1 and TDP1 bind in an antiparallel orientation; the N-terminus of the former protein interacts with the C-terminal domain of the latter. The functional significance of PARP1 and TDP1 interaction in the process of DNA repair was demonstrated for the first time.  相似文献   

14.
Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes   总被引:1,自引:0,他引:1  
Poly(ADP-ribose) polymerase (PARP) takes part mainly in regulation of DNA repair, thereby maintaining genomic stability in the nucleus. However, what role PARP plays in mitotic cells is not known. Centrosomes play an important role in maintaining the fidelity of chromosome distribution during cell division. Loss of these functions might cause chromosomal instability and aneuploidy. p53 and BRCA1 were recently found to localize to the centrosome at mitosis. We found that PARP is localized to the centrosomes and the chromosomes at cell-division phase and interphase by indirect immunofluorescence. Furthermore, by analysis of isolated centrosomes PARP protein was found to associate with the centrosomes during mitosis. These data suggest that PARP may be involved in maintenance of chromosomal stability.  相似文献   

15.
The interaction between highly purified poly(ADP-ribose) polymerase from calf thymus and different topological forms of pBR322 DNA has been studied by gel retardation electrophoresis and electron microscopy. We show that: (i) in the absence of nicks on DNA the enzyme has a marked affinity for supercoiled (form I) DNA, (ii) in the presence of single stranded breaks poly(ADP-ribose) polymerase preferentially binds to form II, (iii) in all cases enzyme molecules are frequently located at DNA intersections, (iv) a cooperative binding of the enzyme on DNA occurs.  相似文献   

16.
Werner syndrome (WS) is characterized by the early onset of symptoms of premature aging, cancer, and genomic instability. The molecular basis of the defects is not understood but presumably relates to the DNA helicase and exonuclease activities of the protein encoded by the WRN gene that is mutated in the disease. The attenuation of p53-mediated apoptosis in WS cells and reported physical interaction between WRN and the tumor suppressor p53 suggest that p53 and WRN functionally interact in a pathway necessary for the normal cellular response. In this study, we have demonstrated that p53 inhibits the exonuclease activity of the purified full-length recombinant WRN protein. p53 did not have an effect on a truncated amino-terminal WRN fragment that retains exonuclease activity but lacks the physical interaction domain for p53 located in the carboxyl terminus. Two naturally occurring p53 mutants found in human cancer displayed a reduced ability to inhibit WRN exonuclease activity. In cells arrested in S phase with hydroxyurea, WRN exits the nucleolus and colocalizes with p53 in the nucleoplasm. The regulation of WRN function by p53 is likely to play an important role in the maintenance of genomic integrity and prevention of cancer and other clinical symptoms associated with WS.  相似文献   

17.
Werner syndrome is a hereditary premature aging disorder characterized by genomic instability. Genetic analysis and protein interaction studies indicate that the defective gene product (WRN) may play an important role in DNA replication, recombination, and repair. DNA polymerase beta (pol beta) is a central participant in both short and long-patch base excision repair (BER) pathways, which function to process most spontaneous, alkylated, and oxidative DNA damage. We report here a physical interaction between WRN and pol beta, and using purified proteins reconstitute of a portion of the long-patch BER pathway to examine a potential role for WRN in this repair response. We demonstrate that WRN stimulates pol beta strand displacement DNA synthesis and that this stimulation is dependent on the helicase activity of WRN. In addition, a truncated WRN protein, containing primarily the helicase domain, retains helicase activity and is sufficient to mediate the stimulation of pol beta. The WRN helicase also unwinds a BER substrate, providing evidence that WRN plays a role in unwinding DNA repair intermediates. Based on these findings, we propose a novel mechanism by which WRN may mediate pol beta-directed long-patch BER.  相似文献   

18.
Poly(ADP-ribose) polymerase is a B-MYB coactivator   总被引:3,自引:0,他引:3  
  相似文献   

19.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   

20.
Loss of the RecQ helicase WRN protein causes the cancer-prone progeroid disorder Werner syndrome (WS). WS cells exhibit defects in DNA replication and telomere preservation. The telomeric single-stranded binding protein POT1 stimulates WRN helicase to unwind longer telomeric duplexes that are otherwise poorly unwound. We reasoned that stimulation might occur by POT1 recruiting and retaining WRN on telomeric substrates during unwinding and/or by POT1 loading on partially unwound ssDNA strands to prevent strand re-annealing. To test these possibilities, we used substrates with POT1-binding sequences in the single-stranded tail, duplex or both. POT1 binding to ssDNA tails did not alter WRN activity on nontelomeric duplexes or recruit WRN to telomeric ssDNA. However, POT1 bound tails inhibited WRN activity on telomeric duplexes with a single 3'-ssDNA tail, which mimic telomeric ends in the open conformation. In contrast, POT1 bound tails stimulated WRN unwinding of forked telomeric duplexes. This indicates that POT1 interaction with the ssDNA/dsDNA junction regulates WRN activity. Furthermore, POT1 did not enhance retention of WRN on telomeric forks during unwinding. Collectively, these data suggest POT1 promotes the apparent processivity of WRN helicase by maintaining partially unwound strands in a melted state, rather than preventing WRN dissociation from the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号