首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active uptake by neurons and glial cells is the main mechanism for maintaining extracellular glutamate at low, non-toxic concentrations. Activation of adenosine A(2A) receptors increases extracellular glutamate levels, while A(2A) receptor antagonists reduce stimulated glutamate outflow. Whether a modulation of the glutamate uptake system is involved in the effects elicited by A(2A) receptor blockers has never been investigated. This study examined the ability of adenosine A(2A) receptor antagonists to prevent the increase in glutamate levels induced by blockade of the glutamate uptake. In rats implanted with a microdialysis probe in the dorsal striatum, perfusion with 4 mm l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC, a transportable competitive inhibitor of glutamate uptake), or 10 mm dihydrokainic acid (DHK, a non-transportable competitive inhibitor that mainly blocks the glial glutamate transporter GLT-1), significantly increased extracellular glutamate levels. The effects of PDC and DHK were completely prevented by the adenosine A(2A) receptor antagonists SCH 58261 (0.01 mg/kg i.p.) and/or ZM 241385 (5 nm via probe). Since an impairment in glutamate transporter function is thought to play a major role in neurodegenerative disorders, the regulation of glutamate uptake may be one of the mechanisms of the neuroprotective effects of A(2A) receptor antagonists.  相似文献   

2.
Convulsions and brain levels of amino acids and 5-hydroxytryptamine (5-HT) in El mice were examined after oral administration of a 1% guanidinoethane sulfonate (GES) solution. The incidence of convulsions increased 3 days after starting GES administration, and this effect continued throughout the 6 months of drug administration. Glutamate levels were increased in the cerebrum, and glutamine levels were increased in the cerebellum three days after starting GES administration. Brain 5-HT levels were not changed at that time. These results suggest that increased seizure susceptibility induced by GES in mice is related to glutamatergic neurons.  相似文献   

3.
Adenosine and dopamine are two important modulators of glutamatergic neurotransmission in the striatum. However, conflicting reports exist about the role of adenosine and adenosine receptors in the modulation of striatal dopamine release. It has been previously suggested that adenosine A(1) receptors localized in glutamatergic nerve terminals indirectly modulate dopamine release, by their ability to modulate glutamate release. In the present study, using in vivo microdialysis, we provide evidence for the existence of a significant glutamate-independent tonic modulation of dopamine release in most of the analyzed striatal compartments. In the dorsal, but not in the ventral, part of the shell of the nucleus accumbens (NAc), blockade of A(1) receptors by local perfusion with the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine or by systemic administration of the non-selective adenosine antagonist caffeine induced a glutamate-dependent release of dopamine. On the contrary, A(1) receptor blockade induced a glutamate-independent dopamine release in the core of the NAc and the nucleus caudate-putamen. Furthermore, using immunocytochemical and functional studies in rat striatal synaptosomes, we demonstrate that a fraction of striatal dopaminergic terminals contains adenosine A(1) receptors, which directly inhibit dopamine release independently of glutamatergic transmission.  相似文献   

4.
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.  相似文献   

5.
6.
Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.  相似文献   

7.
The anti-Parkinsonian effect of glutamate metabotropic group 5 (mGluR5) and adenosine A(2A) receptor antagonists is believed to result from their ability to postsynaptically control the responsiveness of the indirect pathway that is hyperfunctioning in Parkinson's disease. mGluR5 and A(2A) antagonists are also neuroprotective in brain injury models involving glutamate excitotoxicity. Thus, we hypothesized that the anti-Parkinsonian and neuroprotective effects of A(2A) and mGluR5 receptors might be related to their control of striatal glutamate release that actually triggers the indirect pathway. The A(2A) agonist, CGS21680 (1-30 nM) facilitated glutamate release from striatal nerve terminals up to 57%, an effect prevented by the A(2A) antagonist, SCH58261 (50 nM). The mGluR5 agonist, CHPG (300-600 mum) also facilitated glutamate release up to 29%, an effect prevented by the mGluR5 antagonist, MPEP (10 microm). Both mGluR5 and A(2A) receptors were located in the active zone and 57 +/- 6% of striatal glutamatergic nerve terminals possessed both A(2A) and mGluR5 receptors, suggesting a presynaptic functional interaction. Indeed, submaximal concentrations of CGS21680 (1 nM) and CHPG (100 microm) synergistically facilitated glutamate release and the facilitation of glutamate release by 10 nM CGS21680 was prevented by 10 microm MPEP, whereas facilitation by 300 microm CHPG was prevented by 10 nM SCH58261. These results provide the first direct evidence that A(2A) and mGluR5 receptors are co-located in more than half of the striatal glutamatergic terminals where they facilitate glutamate release in a synergistic manner. This emphasizes the role of the modulation of glutamate release as a likely mechanism of action of these receptors both in striatal neuroprotection and in Parkinson's disease.  相似文献   

8.
In the present study we have used single-cell RT-PCR in conjunction with electrophysiology to examine the expression and functional properties of metabotropic glutamate receptors (mGluRs) expressed within biochemically identified cholinergic interneurones in the rat striatum. Using single-cell RT-PCR, it was possible to demonstrate the presence of mGluR1, mGluR2, mGluR3, mGluR5 and mGluR7 mRNAs within single cholinergic interneurones. Bath application of the non-selective mGluR agonist (1 S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 S,3R-ACPD) or the group-I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) depolarized all cholinergic neurones tested by activation of an inward current at -60 mV. The effects of DHPG were partially inhibited by the mGluR5 selective antagonist 6-methyl-2-(pherazo)-3-pyridinol and by the non-selective group-I antagonist alpha-methyl-4-carboxyphenylglycine but were not mimicked by the group-II and group-III selective mGluR agonists 2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) and L-2-amino-4-phosphonobutanoate (L-AP4), respectively. Intrastriatal stimulation evoked an excitatory postsynaptic current within cholinergic neurones that was reversibly inhibited by bath application of the group-II and group-III selective mGluR agonists DCG-IV and L-AP4, respectively, via presynaptic actions. In summary, we have identified the mGluRs expressed by striatal cholinergic interneurones and demonstrated that their activation produces modulatory effects via both pre- and postsynaptic mechanisms.  相似文献   

9.
The aim of this work was to investigate the potential neuroprotective effects of the metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) towards quinolinic acid (QA)-induced striatal excitoxicity. Intrastriatal MPEP (5 nmol/0.5 micro L) significantly attenuated the body weight loss, the electroencephalographic alterations, the impairment in spatial memory and the striatal damage induced by bilateral striatal injection of QA (210 nmol/0.7 micro L). In a second set of experiments, we aimed to elucidate the mechanisms underlying the neuroprotective effects of MPEP. In microdialysis studies in naive rats MPEP (80-250 micro m through the dialysis probe) significantly reduced the increase in glutamate levels induced by 5 mm QA. In primary cultures of striatal neurons MPEP (50 micro m) reduced the toxicity induced by direct application of glutamate [measured as release of lactate dehydrogenase [LDH]). Finally, we found that 50 micro m MPEP was unable to directly block NMDA-induced effects (namely field potential reduction in corticostriatal slices, as well as LDH release and intracellular calcium increase in striatal neurons). We conclude that: (i) MPEP has neuroprotective effects towards QA-induced striatal excitotoxicity; (ii) both pre- and post-synaptic mechanisms are involved; (iii) the neuroprotective effects of MPEP do not appear to involve a direct blockade of NMDA receptors.  相似文献   

10.
11.
The existence on glutamatergic nerve endings of nicotinic acetylcholine receptors (nAChRs) mediating enhancement of glutamate release has often been suggested but not demonstrated directly. Here, we study the effects of nAChR agonists on [3 H]-d-aspartate ([3 H]-d-ASP) release from synaptosomes superfused in conditions known to prevent indirect effects. Nicotinic receptor agonists, while unable to modify the basal [3 H]-d-ASP release from human neocortex or rat striatal synaptosomes, enhanced the Ca2+ -dependent exocytotic release evoked by K+ (12 mm) depolarization. Their rank order of potency were anatoxin-a > epibatidine > nicotine > ACh (+ atropine). The anatoxin-a effect, both in human and rat synaptosomes, was antagonized by mecamylamine, alpha-bungarotoxin or methyllycaconitine. The basal release of [3 H]ACh from human cortical synaptosomes was increased by (-)-nicotine (EC50 = 1.16 +/- 0.33 microm) or by ACh plus atropine (EC50 = 2.0 +/- 0.04 microm). The effect of ACh plus atropine was insensitive to alpha-bungarotoxin, methyllycaconitine or alpha-conotoxin MII, whereas it was totally antagonized by mecamylamine or dihydro-beta-erythroidine. To conclude, glutamatergic axon terminals in human neocortex and in rat striatum possess alpha7* nicotinic heteroreceptors mediating enhancement of glutamate release. Release-enhancing cholinergic autoreceptors in human neocortex are nAChRs with a pharmacological profile compatible with the alpha4beta2 subunit combination.  相似文献   

12.
We have studied the in vivo effect of the selective agonist for group II metabotropic glutamate receptors (2S, 2'R, 3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) against MPP+-induced toxicity on rat striatal dopaminergic nerve terminals by using both microdialysis and immunohistochemical techniques. Perfusion of 1 mM DCG-IV during 1 h protected dopaminergic nerve terminals against the degeneration induced by a 15-minute perfusion of 1 mM MPP+. In addition, the microglial cell population was markedly activated 24 h after DCG-IV perfusion. The astroglial cell population was only markedly activated around the microdialysis probe. This protective effect seems to be dependent on protein synthesis since 1 mM cycloheximide, an inhibitor of protein synthesis, abolished the neuroprotective effect of 1 mM DCG-IV against MPP+ toxicity. Perfusion of DCG-IV induced an upregulation of striatal brain-derived neurotrophic factor (BDNF) mRNA expressing cells which were confined precisely around the microdialysis probe. Taken together, our results suggest that the induction and release of brain-derived neurotrophic factor (BDNF) by activated glial cells induced by DCG-IV perfusion may account for its protective action against MPP+-induced dopaminergic terminal degeneration.  相似文献   

13.
Crayfish neuromuscular junctions are good models for the α-amino-hydroxy-5-methyl-4-isoxazol-propionic acid-type of vertebrate brain excitatory synapses. The action of a typical volatile anaesthetic, isoflurane, was studied on the excitatory postsynaptic currents recorded with a perfused macropatch electrode. Isoflurane reduced quantal exitatory postsynaptic currents in amplitude, in their rise time and in the decay time constant. Small such effects were elicited by <1 mmol · l−1 isoflurane, while the maximal isoflurane concentration of 7 mmol · l−1 reduced the amplitude to about a quarter and shortened the decay time constant even more, while the rise time was diminished by about a quarter. This combination of effects is typical for an open channel block for which an approximate binding rate constant of isoflurane of 6 · 105 mol−1l · s−1 and an unbinding rate of 10–100 s−1 is derived. In addition to this postsynaptic effect, isoflurane inhibited the release of transmitter quanta from the terminal, for instance with 2.5 mmol · l−1 isoflurane by a factor of 7.3 ± 6.3 (SD). In the glutamatergic nerve terminals release is modulated by low glutamate concentrations via a metabotropic autoreceptor which is blocked by the combination of 6-cyano-7-nitro-quinoxaline-2,3-dione and dl-2-amino-5-phosphor-valeric acid. This blocker combination also can prevent the inhibition of release by isoflurane, and it may be suggested that isoflurane elicits inhibition of release through the metabotropic presynaptic glutamate receptors. Accepted: 29 March 1998  相似文献   

14.
Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane‐anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF‐81297 was blocked following intrastriatal infusion of: (i) the D1/5 receptor antagonist SCH‐23390, (ii) the nNOS inhibitor 7‐nitroindazole, (iii) the non‐specific ionotropic glutamate receptor antagonist kynurenic acid, and (iv) the selective NMDA receptor antagonist 3‐phosphonopropyl‐piperazine‐2‐carboxylic acid. Glycine co‐perfusion did not affect SKF‐81297‐induced NO efflux. Furthermore, intrastriatal infusion of SKF‐81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF‐81297 were both blocked by intrastriatal infusion of SCH‐23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA‐glutamate interactions play a critical role in stimulating striatal nNOS activity.  相似文献   

15.
One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

16.
《Neuron》2022,110(18):2949-2960.e4
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

17.
Familial British dementia and familial Danish dementia are neurodegenerative disorders caused by mutations in the gene integral membrane protein 2B (ITM2b) encoding BRI2, which tunes excitatory synaptic transmission at both presynaptic and postsynaptic termini. In addition, BRI2 interacts with and modulates proteolytic processing of amyloid-β precursor protein (APP), whose mutations cause familial forms of Alzheimer''s disease (AD) (familial AD). To study the pathogenic mechanisms triggered by the Danish mutation, we generated rats carrying the Danish mutation in the rat Itm2b gene (Itm2bD rats). Given the BRI2/APP interaction and the widely accepted relevance of human amyloid β (Aβ), a proteolytic product of APP, to AD, Itm2bD rats were engineered to express two humanized App alleles and produce human Aβ. Here, we studied young Itm2bD rats to investigate early pathogenic changes in these diseases. We found that periadolescent Itm2bD rats not only present subtle changes in human Aβ levels along with decreased spontaneous glutamate release and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor–mediated responses but also had increased short-term synaptic facilitation in the hippocampal Schaeffer-collateral pathway. These alterations in excitatory interneuronal communication can impair learning and memory processes and were akin to those observed in adult mice producing rodent Aβ and carrying either the Danish or British mutations in the mouse Itm2b gene. Collectively, the data show that the pathogenic Danish mutation alters the physiological function of BRI2 at glutamatergic synapses across species and early in life. Future studies will determine whether this phenomenon represents an early pathogenic event in human dementia.  相似文献   

18.
We explored possible differences in the peripheral and central pharmacokinetics of L-DOPA as a basis for individual variation in the liability to dyskinesia. Unilaterally, 6-hydroxydopamine (6-OHDA) lesioned rats were treated chronically with L-DOPA for an induction and monitoring of abnormal involuntary movements (AIMs). Comparisons between dyskinetic and non-dyskinetic cases were then carried out with regard to plasma and striatal L-DOPA concentrations, tissue levels of dopamine (DA), DA metabolites, and serotonin. After a single intraperitoneal injection of L-DOPA, plasma L-DOPA concentrations did not differ between dyskinetic and non-dyskinetic animals, whereas peak levels of L-DOPA in the striatal extracellular fluid were about fivefold larger in the former compared with the latter group. Interestingly, the time course of the AIMs paralleled the surge in striatal L-DOPA levels. Intrastriatal infusion of L-DOPA by reverse dialysis concentration dependently induced AIMs in all 6-OHDA lesioned rats, regardless of a previous priming for dyskinesia. Steady-state levels of DA and its metabolites in striatal and cortical tissue did not differ between dyskinetic and non-dyskinetic animals, indicating that the observed difference in motor response to L-DOPA did not depend on the extent of lesion-induced DA depletion. These results show that an elevation of L-DOPA levels in the striatal extracellular fluid is necessary and sufficient for the occurrence of dyskinesia. Individual differences in the central bioavailability of L-DOPA may provide a clue to the varying susceptibility to dyskinesia in Parkinson's disease.  相似文献   

19.
Rats are commonly used animals for laboratory experiments and many experiments require general anesthesia. However, the lack of published and reproducible intravenous anesthesia protocols for rats results in unnecessary animal use to establish new anesthesia techniques across institutions. We therefore developed an anesthesia protocol with propofol, ketamine, and rocuronium for mechanically ventilated rats, and evaluated vital parameters and plasma concentrations. 15 male Sprague-Dawley rats underwent inhalation induction with sevoflurane and tracheal, venous and arterial cannulation. After established venous access, sevoflurane was substituted by propofol and ketamine (ketofol). Rocuronium was added under mechanical ventilation for 7 h. Drug dosages were stepwise reduced to prevent accumulation. All animals survived the observation period and showed adequate depth of anesthesia. Mean arterial pressure and heart rate remained within normal ranges. Median propofol plasma concentrations remained stable: 1, 4, 7 h: 2.0 (interquartile range (IQR): 1.8–2.2), 2.1 (1.8–2.2), 1.8 (1.6–2.1) µg/ml, whereas median ketamine concentrations slightly differed after 7 h compared to 1 h: 1, 4, 7 h: 3.7 (IQR: 3.5–4.5), 3.8 (3.3–4.1), 3.8 (3.0–4.1) µg/ml. Median rocuronium plasma concentrations were lower after 4 and 7 h compared to 1 h: 1, 4, 7 h: 3.9 (IQR: 3.5–4.9), 3.2 (2.7–3.3), 3.0 (2.4–3.4) µg/ml. Our anesthesia protocol provides stable and reliable anesthesia in mechanically ventilated rats for several hours.  相似文献   

20.
In membranes of rat striatum, phorbol 12-myristate 13-acetate (PMA), a potent activator of Ca2+/phospholipid-dependent protein kinase, enhanced adenylate cyclase activity by counteracting the inhibition elicited by GTP. Exposure to pertussis toxin caused a similar alteration of the GTP-regulation of the enzyme activity and largely prevented the PMA effects. PMA treatment increased by threefold the GTP requirement of acetylcholine-induced inhibition of adenylate cyclase activity but did not affect the GTP-dependence of the enzyme stimulation by dopamine. The hydrolysis of GTP by membrane-bound high affinity GTPase was significantly inhibited by PMA (IC 50 10 nM) in a Ca2+-dependent manner. Like PMA, phorbol 12, 13-dibutyrate inhibited the GTPase activity, whereas the biologically inactive 4- phorbol 13-acetate and 4- phorbol were without effect. These results suggest that activation of Ca2+/phospholipid-dependent protein kinase by PMA stimulates adenylate cyclase activity by impairing the activity of the GTP-dependent inhibitory protein, possibly through a reduction of the GTP-GDP exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号