首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kshirsagar M  Parker R 《Genetics》2004,166(2):729-739
The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5'-3' exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5'-3' degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5'-3' exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Delta had no effect when combined with the lsm1Delta, dhh1Delta, or pat1Delta mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction.  相似文献   

2.
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1   总被引:4,自引:0,他引:4  
Fischer N  Weis K 《The EMBO journal》2002,21(11):2788-2797
An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m(7)G cap structure at the 5' end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5'-3' exoribonuclease Xrn1. Dhh1 specifically affects mRNA turnover in the deadenylation-dependent decay pathway, but does not act on the degradation of nonsense-containing mRNAs. Cells that lack dhh1 accumulate degradation intermediates that have lost their poly(A) tail but contain an intact 5' cap structure, suggesting that Dhh1 is required for efficient decapping in vivo. Furthermore, recombinant Dhh1 is able to stimulate the activity of the purified decapping enzyme Dcp1 in an in vitro decapping assay. We propose that the DEAD box protein Dhh1 regulates the access of the decapping enzyme to the m(7)G cap by modulating the structure at the 5' end of mRNAs.  相似文献   

3.
4.
5.
The yeast RNA helicase Dhh1p has been shown to associate with components of mRNA decay and is involved in mRNA decapping and degradation. An RNA-binding protein, Rbp1p, is known to bind to the 3'-UTR of porin (POR1) mRNA, and induces mRNA decay by an uncharacterized mechanism. Here, we show that Dhh1p can associate with POR1 mRNA and specifically promote POR1 mRNA decay via its interaction with Rbp1p. As compared to its mammalian homolog RCK/p54/DDX6, Dhh1p has a unique and long extension at its C-terminus. Interestingly, this non-conserved C-terminal region of Dhh1p is required for interaction with Rbp1p and modulating Rbp1p-mediated POR1 mRNA decay. Notably, expression of a C-terminal 81-residue deleted Dhh1p can fully complement the growth defect of a dhh1Δ strain and retains its function in regulating the mRNA level of an RNA-binding protein Edc1p. Moreover, mammalian DDX6 became capable of interacting with Rbp1p and could confer Rbp1p-mediated POR1 mRNA decay in the dhh1Δ strain upon fusion to the C-terminal unique region of Dhh1p. Thus, we propose that the non-conserved C-terminus of Dhh1p plays a role in defining specific interactions with mRNA regulatory factors that promote distinct mRNA decay.  相似文献   

6.
7.
General translational repression by activators of mRNA decapping   总被引:31,自引:0,他引:31  
Coller J  Parker R 《Cell》2005,122(6):875-886
Translation and mRNA degradation are affected by a key transition where eukaryotic mRNAs exit translation and assemble an mRNP state that accumulates into processing bodies (P bodies), cytoplasmic sites of mRNA degradation containing non-translating mRNAs, and mRNA degradation machinery. We identify the decapping activators Dhh1p and Pat1p as functioning as translational repressors and facilitators of P body formation. Strains lacking both Dhh1p and Pat1p show strong defects in mRNA decapping and P body formation and are blocked in translational repression. Contrastingly, overexpression of Dhh1p or Pat1p causes translational repression, P body formation, and arrests cell growth. Dhh1p, and its human homolog, RCK/p54, repress translation in vitro, and Dhh1p function is bypassed in vivo by inhibition of translational initiation. These results identify a broadly acting mechanism of translational repression that targets mRNAs for decapping and functions in translational control. We propose this mechanism is competitively balanced with translation, and shifting this balance is an important basis of translational control.  相似文献   

8.
Dunckley T  Tucker M  Parker R 《Genetics》2001,157(1):27-37
The major mRNA decay pathway in Saccharomyces cerevisiae occurs through deadenylation, decapping, and 5' to 3' degradation of the mRNA. Decapping is a critical control point in this decay pathway. Two proteins, Dcp1p and Dcp2p, are required for mRNA decapping in vivo and for the production of active decapping enzyme. To understand the relationship between Dcp1p and Dcp2p, a combination of both genetic and biochemical approaches were used. First, we demonstrated that when Dcp1p is biochemically separated from Dcp2p, Dcp1p was active for decapping. This observation confirmed that Dcp1p is the decapping enzyme and indicated that Dcp2p functions to allow the production of active Dcp1p. We also identified two related proteins that stimulate decapping, Edc1p and Edc2p (Enhancer of mRNA DeCapping). Overexpression of the EDC1 and EDC2 genes suppressed conditional alleles of dcp1 and dcp2, respectively. Moreover, when mRNA decapping was compromised, deletion of the EDC1 and/or EDC2 genes caused significant mRNA decay defects. The Edc1p also co-immunoprecipitated with Dcp1p and Dcp2p. These results indicated that Edc1p and Edc2p interact with the decapping proteins and function to enhance the decapping rate.  相似文献   

9.
The decapping of eukaryotic mRNAs is a key step in their degradation. The heteroheptameric Lsm1p-7p complex is a general activator of decapping and also functions in protecting the 3' ends of deadenylated mRNAs from a 3'-trimming reaction. Lsm1p is the unique member of the Lsm1p-7p complex, distinguishing that complex from the functionally different Lsm2p-8p complex. To understand the function of Lsm1p, we constructed a series of deletion and point mutations of the LSM1 gene and examined their effects on phenotype. These studies revealed the following: (i) Mutations affecting the predicted RNA-binding and inter-subunit interaction residues of Lsm1p led to impairment of mRNA decay, suggesting that the integrity of the Lsm1p-7p complex and the ability of the Lsm1p-7p complex to interact with mRNA are important for mRNA decay function; (ii) mutations affecting the predicted RNA contact residues did not affect the localization of the Lsm1p-7p complex to the P-bodies; (iii) mRNA 3'-end protection could be indicative of the binding of the Lsm1p-7p complex to the mRNA prior to activation of decapping, since all the mutants defective in mRNA 3' end protection were also blocked in mRNA decay; and (iv) in addition to the Sm domain, the C-terminal domain of Lsm1p is also important for mRNA decay function.  相似文献   

10.
11.
The nuclear-cytoplasmic distribution of tRNA depends on the balance between tRNA nuclear export/re-export and retrograde tRNA nuclear import in Saccharomyces cerevisiae. The distribution of tRNA is sensitive to nutrient availability as cells deprived of various nutrients exhibit tRNA nuclear accumulation. Starvation induces numerous events that result in translational repression and P-body formation. This study investigated the possible coordination of these responses with tRNA nuclear-cytoplasmic distribution. Dhh1 and Pat1 function in parallel to promote translation repression and P-body formation in response to starvation. Loss of both, Dhh1 and Pat1, results in a failure to repress translation and to induce P-body formation in response to glucose starvation. This study reports that nutrient deprived dhh1 pat1 cells also fail to accumulate tRNA within nuclei. Conversely, inhibition of translation initiation and induction of P-body formation by overproduction of Dhh1 or Pat1 cause tRNA nuclear accumulation in nutrient-replete conditions. Also, loss of the mRNA decapping activator, Lsm1, causes tRNA nuclear accumulation. However, the coordination between P-body formation, translation repression, and tRNA distribution is limited to the early part of the P-body formation/translation repression pathway as loss of mRNA decapping or 5' to 3' degradation does not influence tRNA nuclear-cytoplasmic dynamics. The data provide the first link between P-body formation/translation initiation and tRNA nuclear-cytoplasmic dynamics. The current model is that Dhh1 and Pat1 function in parallel to promote starvation-induced tRNA nuclear accumulation.  相似文献   

12.
Analysis of mutations in the yeast mRNA decapping enzyme   总被引:4,自引:0,他引:4  
Tharun S  Parker R 《Genetics》1999,151(4):1273-1285
  相似文献   

13.
A major pathway of eukaryotic mRNA turnover initiates with deadenylation, which allows a decapping reaction leading to 5'-3' exonucleolytic degradation. A key control point in this pathway is the decapping of the mRNA. Two proteins, Edc1 and Edc2, were genetically identified previously as enhancers of the decapping reaction. In this work, we demonstrate that Edc1p and Edc2p are RNA-binding proteins. In addition, recombinant Edc1p or Edc2p stimulates mRNA decapping in cell-free extracts or with purified decapping enzyme. These results suggest that Edc1p and Edc2p activate decapping directly by binding to the mRNA substrate and enhancing the activity of the decapping enzyme. Interestingly, edc1Delta strains show defects in utilization of glycerol as a carbon source and misregulation of several mRNAs in response to carbon-source changes. This identifies a critical role for decapping and Edc1p in alterations of gene expression in response to carbon-source changes.  相似文献   

14.
15.
The control of mRNA degradation and translation are important for the regulation of gene expression. mRNA degradation is often initiated by deadenylation, which leads to decapping and 5′–3′ decay. In the budding yeast Saccharomyces cerevisae, decapping is promoted by the Dhh1 and Pat1 proteins, which appear to both inhibit translation initiation and promote decapping. To understand the function of these factors, we identified the ribosome binding protein Stm1 as a multicopy suppressor of the temperature sensitivity of the pat1Δ strain. Stm1 loss-of-function alleles and overexpression strains show several genetic interactions with Pat1 and Dhh1 alleles in a manner consistent with Stm1 working upstream of Dhh1 to promote Dhh1 function. Consistent with Stm1 affecting Dhh1 function, stm1Δ strains are defective in the degradation of the EDC1 and COX17 mRNAs, whose decay is strongly affected by the loss of Dhh1. These results identify Stm1 as an additional component of the mRNA degradation machinery and suggest a possible connection of mRNA decapping to ribosome function.  相似文献   

16.
17.
S Tharun  R Parker 《Molecular cell》2001,8(5):1075-1083
The major pathway of eukaryotic mRNA decay involves deadenylation-dependent decapping followed by 5' to 3' exonucleolytic degradation. By examining interactions among mRNA decay factors, the mRNA, and key translation factors, we have identified a critical transition in mRNP organization that leads to decapping and degradation of yeast mRNAs. This transition occurs after deadenylation and includes loss of Pab1p, eIF4E, and eIF4G from the mRNA and association of the decapping activator complex, Lsm1p-7p, which enhances the coimmunoprecipitation of a decapping enzyme complex (Dcp1p and Dcp2p) with the mRNA. These results define an important rearrangement in mRNP organization and suggest that deadenylation promotes mRNA decapping by both the loss of Pab1p and the recruitment of the Lsm1p-7p complex.  相似文献   

18.
19.
Xu J  Yang JY  Niu QW  Chua NH 《The Plant cell》2006,18(12):3386-3398
mRNA turnover in eukaryotes involves the removal of m7GDP from the 5' end. This decapping reaction is mediated by a protein complex well characterized in yeast and human but not in plants. The function of the decapping complex in the development of multicellular organisms is also poorly understood. Here, we show that Arabidopsis thaliana DCP2 can generate from capped mRNAs, m7GDP, and 5'-phosphorylated mRNAs in vitro and that this decapping activity requires an active Nudix domain. DCP2 interacts in vitro and in vivo with DCP1 and VARICOSE (VCS), an Arabidopsis homolog of human Hedls/Ge-1. Moreover, the interacting proteins stimulate DCP2 activity, suggesting that the three proteins operate as a decapping complex. Consistent with their role in mRNA decay, DCP1, DCP2, and VCS colocalize in cytoplasmic foci, which are putative Arabidopsis processing bodies. Compared with the wild type, null mutants of DCP1, DCP2, and VCS accumulate capped mRNAs with a reduced degradation rate. These mutants also share a similar lethal phenotype at the seedling cotyledon stage, with disorganized veins, swollen root hairs, and altered epidermal cell morphology. We conclude that mRNA turnover mediated by the decapping complex is required for postembryonic development in Arabidopsis.  相似文献   

20.
The genomes of positive-strand RNA [+RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of +RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic +RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3' noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号