首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P Iyer  R Lalane  C Morris  P Challa  R Vann  PV Rao 《PloS one》2012,7(8):e42627
Primary open-angle glaucoma is the second leading cause of blindness in the United States and is commonly associated with elevated intraocular pressure (IOP) resulting from diminished aqueous humor (AH) drainage through the trabecular pathway. Developing effective therapies for increased IOP in glaucoma patients requires identification and characterization of molecular mechanisms that regulate IOP and AH outflow. This study describes the identification and role of autotaxin (ATX), a secretory protein and a major source for extracellular lysophosphatidic acid (LPA), in regulation of IOP in a rabbit model. Quantitative proteomics analysis identified ATX as an abundant protein in both human AH derived from non-glaucoma subjects and in AH from different animal species. The lysophospholipase D (LysoPLD) activity of ATX was found to be significantly elevated (by ∼1.8 fold; n = 20) in AH derived from human primary open angle glaucoma patients as compared to AH derived from age-matched cataract control patients. Immunoblotting analysis of conditioned media derived from primary cultures of human trabecular meshwork (HTM) cells has confirmed secretion of ATX and the ability of cyclic mechanical stretch of TM cells to increase the levels of secreted ATX. Topical application of a small molecular chemical inhibitor of ATX (S32826), which inhibited AH LysoPLD activity in vitro (by >90%), led to a dose-dependent and significant decrease of IOP in Dutch-Belted rabbits. Single intracameral injection of S32826 (∼2 µM) led to significant reduction of IOP in rabbits, with the ocular hypotensive response lasting for more than 48 hrs. Suppression of ATX expression in HTM cells using small-interfering RNA (siRNA) caused a decrease in actin stress fibers and myosin light chain phosphorylation. Collectively, these observations indicate that the ATX-LPA axis represents a potential therapeutic target for lowering IOP in glaucoma patients.  相似文献   

2.
Autotaxin (ATX) is a secreted enzyme, which produces extracellular lysophosphatidate (LPA) from lysophosphatidylcholine (LPC). LPA activates six G protein-coupled receptors and this is essential for vasculogenesis during embryonic development. ATX is also involved in wound healing and inflammation, and in tumor growth, metastasis, and chemo-resistance. It is, therefore, important to understand how ATX is regulated. It was proposed that ATX activity is inhibited by its product LPA, or a related lipid called sphingosine 1-phosphate (S1P). We now show that this apparent inhibition is ineffective at the high concentrations of LPC that occur in vivo. Instead, feedback regulation by LPA and S1P is mediated by inhibition of ATX expression resulting from phosphatidylinositol-3-kinase activation. Inhibiting ATX activity in mice with ONO-8430506 severely decreased plasma LPA concentrations and increased ATX mRNA in adipose tissue, which is a major site of ATX production. Consequently, the amount of inhibitor-bound ATX protein in the plasma increased. We, therefore, demonstrate the concept that accumulation of LPA in the circulation decreases ATX production. However, this feedback regulation can be overcome by the inflammatory cytokines, TNF-α or interleukin 1β. This enables high LPA and ATX levels to coexist in inflammatory conditions. The results are discussed in terms of ATX regulation in wound healing and cancer.  相似文献   

3.
Autotaxin (ATX) is an attractive pharmacological target due to its lysophospholipase D activity which leads to the production of lysophosphatidic acid (LPA). Blockage of ATX produced LPA by small molecules could be a potential anticancer chemotherapy. In our previous study, we have identified the two beta-hydroxy phosphonate analogs of LPA (compounds f17 and f18) as ATX inhibitors. With this work, we investigated alpha- and beta-substituted phosphonate analogs of LPA and evaluated them for ATX inhibitory activity. The stereochemistry of beta-hydroxy phosphonates was also studied.  相似文献   

4.
Previous genetic studies have indicated that the type L α-glucan phosphorylase (Pho1) has an essential role during the initiation process of starch biosynthesis during rice seed development. To gain insight into its role in starch metabolism, we characterized the enzymatic properties of the Pho1 recombinant form. Pho1 has significantly higher catalytic efficiency toward both linear and branched α-glucans in the synthesis direction than in the degradation direction with equilibrium constants for the various substrates ranging from 13 to 45. Pho1 activity is strongly inhibited by its own reaction product (Pi) in the synthesis reaction (Ki = 0.69 mM) when amylopectin is the primer substrate, but this inhibition is less pronounced (Ki = 14.2 mM) when short α-glucan chains are used as primers. Interestingly, even in the presence of Pi alone, Pho1 not only degrades maltohexaose but also extends them to synthesize longer MOSs. Production of a broad spectrum of MOSs (G4-G19) was stimulated by both Pi and Glc1P in an additive fashion. Thus, even under physiological conditions of high Pi/Glc1P, Pho1 extends the chain length of short MOSs which can then be used as subsequent primer by starch synthase activities. As ADP-glucose strongly inhibits Pho1activity, Pho1 likely operates only during the initial stage and not during maturation phase of starch synthesis.  相似文献   

5.
Methotrexate was first introduced as a cytotoxic agent that inhibits nucleotide biosynthesis in various cancer disorders; its molecular mechanism remains elusive. To understand the molecular mechanism by which methotrexate induces apoptosis, we analyzed the resulting intracellular protein changes in methotrexate-treated acute promyelocytic leukaemia (HL-60) cells by cysteine-labeled differential in-gel electrophoresis (CL-DIGE) combined with mass spectrometry. Initial CL-DIGE analysis revealed that 24 proteins were differentially expressed (p < 0.05) in the HL-60 cell proteome after treatment with 2.5 µM methotrexate for 72 h. We found that three structural α4, α5, α7 proteasome subunits, a non-catalytic β3 and two 26S regulatory proteasome subunits were down-regulated in methotrexate-treated HL-60 cells. Western blot analyses further showed that the inhibition of proteasome subunits is accompanied by suppression of NF-κB subunits and promotes the accumulation of ubiquitinated proteins. Furthermore, methotrexate activated unfolded protein response by inducing the expression of endoplasmic reticulum-resident proteins such as calreticulin, protein disulphide isomerase A3 and A4, and 78 kDa glucose regulated protein in a time-dependent manner. Altogether, our findings demonstrated that targeting NF-κB, structural and regulatory proteasome subunits with methotrexate may provide new insight into understanding methotrexate-induced apoptotic activities in HL-60 cells.  相似文献   

6.
7.
The in vitro antitumor activities and in vivo immunomodulatory effects of water-soluble highly branched heteropolysaccharides isolated from Rhizoma panacis Japonici were evaluated by three cell lines and BALB/c mice implanted with Sarcoma 180 (S-180) tumors. The heteropolysaccharides showed potent tumor therapeutic effect by potentiating the animal's immune responses including an increase in white blood cell count and lymphocyte number. The heteropolysaccharides also induced apoptosis in the S-180 cells and alleviate the short-term side effect of cisplatin (DDP) to the animal during the treatment period. The bioactivity of the heteropolysaccharides might be due to their unique structures that had an α-(1 → 4)-d-glucan main chain with side chains containing mannose and galactose residues, a spherical chain conformation, as well as high water solubility, all of which facilitated their interaction with the surface receptors of the immune cells.  相似文献   

8.
The severe acute respiratory syndrome (SARS) virus depends on a chymotrypsin-like cysteine proteinase (3CLpro) to process the translated polyproteins to functional viral proteins. This enzyme is a target for the design of potential anti-SARS drugs. A series of ketones and corresponding mono- and di-fluoro ketones having two or three aromatic rings were synthesized as possible reversible inhibitors of SARS 3CLpro. The design was based on previously established potent inhibition of the enzyme by oxa analogues (esters), which also act as substrates. Structure-activity relationships and modeling studies indicate that three aromatic rings, including a 5-bromopyridin-3-yl moiety, are key features for good inhibition of SARS 3CLpro. Compound 11d, 2-(5-bromopyridin-3-yl)-1-(5-(4-chlorophenyl)furan-2-yl)ethanone and its α-monofluorinated analogue 12d, gave the best reversible inhibition with IC50 values of 13 μM and 28 μM, respectively. In contrast to inhibitors having two aromatic rings, α-fluorination of compounds with three rings unexpectedly decreased the inhibitory activity.  相似文献   

9.
Skeletal muscle unloaded shortening has been indirectly determined in the past. Here, we present a novel high-speed optical tracking technique that allows recording of unloaded shortening in single intact, voltage-clamped mammalian skeletal muscle fibers with 2-ms time resolution. L-type Ca2+ currents were simultaneously recorded. The time course of shortening was biexponential: a fast initial phase, τ1, and a slower successive phase, τ2, with activation energies of 59 kJ/mol and 47 kJ/mol. Maximum unloaded shortening speed, vu,max, was faster than that derived using other techniques, e.g., ∼14.0 L0 s−1 at 30°C. Our technique also allowed direct determination of shortening acceleration. We applied our technique to single fibers from C57 wild-type, dystrophic mdx, and minidystrophin-expressing mice to test whether unloaded shortening was affected in the pathophysiological mechanism of Duchenne muscular dystrophy. vu,max and au,max values were not significantly different in the three strains, whereas τ1 and τ2 were increased in mdx fibers. The results were complemented by myosin heavy and light chain (MLC) determinations that showed the same myosin heavy chain IIA profiles in the interossei muscles from the different strains. In mdx muscle, MLC-1f was significantly increased and MLC-2f and MLC-3f somewhat reduced. Fast initial active shortening seems almost unaffected in mdx muscle.  相似文献   

10.
Cryptonemia seminervis biosynthesizes a family of d,l-hybrid galactans based on the classical 3-linked β-d-galactopyranosyl→4-linked α-d- and α-l-galactopyranosyl alternating sequence (A-units→B-units) with major amounts of α-d- and α-l-galactose and 3,6-anhydro-d- and l-galactose and lesser percentages of 3,6-anhydro-2-O-methyl-l-galactose, 2-O-methyl-, 4-O-methyl- and 6-O-methylgalactoses. The dispersion of structures in this family is based on five structural factors, namely: (a) the amount and position of substituent groups as sulfate (major), pyruvic acid ketals, methoxyl and glycosyl side-chain (4-O-methyl galactopyranosyl and/or xylosyl); (b) the ratio galactose/3,6-anhydrogalactose in the B-units; (c) the ratio d,l-galactoses and d,l-3,6-anhydrogalactoses also in the B-units, (d) the formation of diads and (e) the sequence of the diads in the linear backbone. Considering these variables it is not unexpected to find in the fractions studied at least 18 structural units producing highly complex structures. Structural studies carried out in two major fractions (S2S-3 and S2S-4) showed that these galactans were formed mainly by β-d-galactopyranosyl 2-sulfate (20 and 11.9 mol %), β-d-galactopyranosyl 2-sulfate 4,6-O-(1′-carboxyethylidene) (8.9 and 6.0 mol %) and β-d-galactopyranosyl 2,6-sulfate (5.4 and 18.6 mol %), together with 3,6-anhydro-α-l-galactopyranosyl (11.4 and 7.3 mol %) and 3,6-anhydro-α-l-galactopyranosyl 2-sulfate (4.9 and 15.4 mol %) and minor quantities of 12-15 other structural units.Preparative alkaline treatment carried out on fraction (S2S-3) produced a quantitative formation of 3,6-anhydro α-l-galactopyranosyl units from precursor units (α-l-galactose 6-sulfate and α-l-galactose 2,6-sulfate). Kinetic studies on this 3,6-anhydro cyclization show a rate constant of 5.2 × 104 s−1 indicating diads of the type G→L6S/2,6S. Data from chemical, spectroscopic and kinetic studies suggest that, in S2S-3, the agaran block in the d,l-hybrid galactan is composed of the following diads: G(6R)→L6S/2,6S and G2S(P)(2,6S)→LA(2S)(2R)(2M) and the carrageenan block of G2S(P)→D(2S)(2,3S)(3S)(3,6S) in a molar ratio of agaran to carrageenan structures of ∼2:1.  相似文献   

11.
Lysophosphatidic acid (LPA) is a pro-fibrotic mediator acting via specific receptors (LPARs) and is synthesized by autotaxin, that increases with obesity. We tested whether LPA could play a role in adipose tissue (AT)-fibrosis associated with obesity. Fibrosis [type I, III, and IV collagens (COL), fibronectin (FN), TGFβ, CTGF and αSMA] and inflammation (MCP1 and F4/80) markers were quantified: (i) in vivo in inguinal (IAT) and perigonadic (PGAT) AT from obese-diabetic db/db mice treated with the LPAR antagonist Ki16425 (5 mg/kg/day ip for 7 weeks); and (ii) in vitro in human AT explants in primary culture for 72 h in the presence of oleoyl-LPA (10 μM) and/or Ki16425 (10 μM) and/or the HIF-1α inhibitor YC-1 (100 μM). Treatment of db/db mice with Ki16425 reduced Col I and IV mRNAs in IAT and PGAT while Col III mRNAs were only reduced in IAT. This was associated with reduction of COL protein staining in both IAT and PGAT. AT explants showed a spontaneous and time-dependent increase in ATX expression and production of LPA in the culture medium, along with increased levels of Col I and III, TGFβ and αSMA mRNAs and of COL protein staining. In vitro fibrosis was blocked by Ki16425 and was further amplified by oleoyl-LPA. LPA-dependent in vitro fibrosis was blocked by co-treatment with YC1. Our results show that endogenous and exogenous LPA exert a pro-fibrotic activity in AT in vivo and in vitro. This activity could be mediated by an LPA1R-dependent pathway and could involve HIF-1α.  相似文献   

12.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   

13.
Spinocerebellar ataxia-3 (also known as Machado-Joseph disease) is an incurable neurodegenerative disorder caused by expression of a mutant variant of ataxin-3 (ATX3) protein. Inhibiting expression of ATX3 would provide a therapeutic strategy, but indiscriminant inhibition of both wild-type and mutant ATX3 might lead to undesirable side effects. An ideal silencing agent would block expression of mutant ATX3 while leaving expression of wild-type ATX3 intact. We have previously observed that peptide nucleic acid (PNA) conjugates targeting the expanded CAG repeat within ATX3 mRNA block expression of both alleles. We have now identified additional PNAs capable of inhibiting ATX3 expression that vary in length and in the nature of the conjugated cation chain. We can also achieve potent and selective inhibition using duplex RNAs containing one or more mismatches relative to the CAG repeat. Anti-CAG antisense bridged nucleic acid oligonucleotides that lack a cationic domain are potent inhibitors but are not allele-selective. Allele-selective inhibitors of ATX3 expression provide insights into the mechanism of selectivity and promising lead compounds for further development and in vivo investigation.  相似文献   

14.
The absorption of four Alternaria toxins with perylene quinone structures, i.e. altertoxin (ATX) I and II, alteichin (ALTCH) and stemphyltoxin (STTX) III, has been determined in the Caco-2 cell Transwell system, which represents a widely accepted in vitro model for human intestinal absorption and metabolism. The cells were incubated with the four mycotoxins on the apical side, and the concentration of the toxins in the incubation media of both chambers and in the cell lysate were determined by liquid chromatography coupled with diode array detection and mass spectrometry (LC-DAD-MS) analysis. ATX I and ALTCH were not metabolised in Caco-2 cells, but ATX II and STTX III were partly biotransformed by reductive de-epoxidation to the metabolites ATX I and ALTCH, respectively. Based on the apparent permeability coefficients (Papp), the following ranking order for the permeation into the basolateral compartment was obtained: ATX I > ALTCH >> ATX II > STTX III. Total recovery of the four toxins decreased in the same order. It is assumed that the losses of STTX III, ATX II and ALTCH in Caco-2 cells are caused by covalent binding to cell components due to the epoxide group and/or the α,β-unsaturated carbonyl group present in these toxins. We conclude from this study that ATX I and ALTCH are well absorbed from the intestinal lumen into the portal blood in vivo. For ATX II and STTX III, intestinal absorption of the parent toxins is very low, but these toxins are partly metabolised to ATX I and ALTCH, respectively, in the intestinal epithelium and absorbed as such.  相似文献   

15.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) was used to convert dodecyl-β-maltoside (DDM) to dodecyl-β-maltooctaoside (DDMO) using α-cyclodextrin (α-CD) or starch as glycosyl donors. At 300 mM α-CD, varied DDM concentration and 60 °C, the reaction obeyed Michaelis-Menten kinetics with a Km value of 18 mM and a Vmax value of 100 U/mg enzyme. However, at 25 mM α-CD the reaction rate decreased with increasing DDM concentration (5-50 mM), and when the α-CD concentration was varied at fixed DDM concentration an S shaped curve was obtained. The deviations from Michaelis-Menten kinetics were interpreted as being caused by formation of inclusion complexes between α-CD and DDM and by micellation of DDM. To achieve a high reaction rate, a high concentration of free α-CD is necessary, since α-CD in the form of a complex has low reactivity. When starch is used as glycosyl donor in the CGTase catalyzed alkyl glycoside elongation reaction, it is thus important to choose reaction conditions under which the cyclization of starch to α-CD is efficient.  相似文献   

16.
Recent decades have experienced a sharp increase in the incidence and prevalence of diabetes mellitus. One antidiabetic therapeutic approach is to reduce gastrointestinal glucose production and absorption through the inhibition of carbohydrate-digesting enzymes such as α-amylase and α-glucosidase and α-amylase. The aim of the current study was to screen six medicinal plant species, with alleged antidiabetic properties for α-glucosidase inhibitory activities. Powdered plant materials were extracted with acetone, and tested for ability to inhibit baker's yeast α-glucosidase and α-amylase activities. The largest mass (440 mg from 10 g) of the extract was obtained from Cassia abbreviata, while both Senna italica and Mormordica balsamina yielded the lowest mass of the extracts. Extracts of stem bark of C. abbreviata inhibited baker's yeast α-glucosidase activity with an IC50 of 0.6 mg/ml. This plant species had activity at low concentrations, with 1.0 mg/ml and above resulting in inhibition of over 70%. The other five plant extracts investigated had IC50 values of between 1.8 and 3.0 mg/ml. Senna italica only managed to inhibit the activity of enzyme-glucosidase at high concentrations with an IC50 value of 1.8 mg/ml, while Tinospora fragosa extracts resulted in about 55% inhibition of the activity of the enzyme at a concentration of 3.5 mg/ml, with an estimated IC50 value of 2.8 mg/ml. The bark extract of C. abbreviata was the most active inhibitor of the enzyme, based on the IC50 values (0.6 mg/ml). The bark extract of C. abbreviata contains non-competitive inhibitor(s) of α-glucosidase, reducing Vmax value of this enzyme from 5 mM·s–1 to 1.67 mM·s–1, while Km remained unchanged at 1.43 mM for para-nitrophenyl glucopyranoside. Antioxidant activity of the extracts was also investigated. The C. abbreviata extract was more active as an antioxidant than the positive control, trolox. The extracts did not inhibit alphaamylase activity more than about 20% at the highest concentration tested.  相似文献   

17.
The α-subunit of the human eukaryotic initiation factor 2 (heIF2α), a GTP binding protein, plays a major role in the initiation of protein synthesis. During various cytoplasmic stresses, eIF2α gets phosphorylated by eIF2α-specific kinases resulting in inhibition of protein synthesis. The cloned and over expressed heIF2α, a protein with a single tryptophan (trp) residue was examined for its conformational characteristics using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The steady-state fluorescence spectrum, fluorescence lifetimes (τ1 = 1.13 ns and τ2 = 4.74 ns) and solute quenching studies revealed the presence of trp conformers in hydrophobic and differential polar environment at any given time. Estimation of the α-helix and β-sheet content showed: (i) more compact structure at pH 2.0, (ii) distorted α-helix and rearranged β-sheet in presence of 4 M guanidine hydrochloride and (iii) retention of more than 50% ordered structure at 95 °C. Hydrophobic dye binding to the protein with loosened tertiary structure was observed at pH 2.0 indicating the existence of a molten globule-like structure. These observations indicate the inherent structural stability of the protein under various denaturing conditions.  相似文献   

18.
A number of d-galactopyranosides bearing aromatic substituents have been prepared, and their binding to immunoglobulin J539 (Fab') has been studied. It appears that the main contribution of the 6-O-aromatic moiety to binding arises from the fact that it imparts an increased hydrophobicity to the ligand, causing a decrease in its hydration (solubility) that results in a greater free-energy of binding. In the d-galactosides having an aromatic aglycon, the phenyl group appears to partake in actual interactions with the protein.  相似文献   

19.
Fucogalactans from edible Agaricus bisporus (RFP-Ab) and wild Lactarius rufus (RFP-Lr) mushrooms were obtained on aqueous extraction followed by purification. RFP-Ab had Mw 43.8 × 104 g mol−1 and RFP-Lr Mw 1.4 × 104 g mol−1. RFP-Lr had a (1 → 6)-linked α-d-Galp main-chain partially substituted at O-2 by nonreducing end-units of α-l-Fucp (29%). While RFP-Ab had a similar main chain, it was partially substituted at O-2 by nonreducing end-units of α-l-Fucp (2.8%) and β-d-Galp (14.5%), and partially methylated at HO-3. Both RFP-Lr and RFP-Ab were tested in mice against polymicrobial sepsis. Lethality rate, myeloperoxidase (MPO) activity and cytokine levels were determined. It was observed a reduction in late mortality rate by 62.5% and 50%, respectively, prevention of neutrophil accumulation in ileum and decreasing in TNF-α and IL-1β serum levels.  相似文献   

20.
A purification method for α-D-galactosidase from Coffea canephora is described. Two enzymes, α-D-galactosidases I and II, having molecular weights of 28,000 and 36,500, respectively, were found and extensively purified. The reaction mechanism of α-D-galactosidase II was studied. The enzyme hydrolysed aryl and alkyl α-D-galactopyranosides and was severely inhibited by excess of these substrates. No inhibition occurred with raffinose. The influence of para substituents on the reaction rate of phenyl α-D-galactopyranosides, the effect of added alcohols, and the non-competitive inhibition by methyl α-D-galactopyranoside were investigated. A two-step mechanism with the formation of an enzyme-galactosyl complex is proposed. With aryl galactopyranosides, the reaction of the enzyme-galactosyl complex with water is rate-limiting. Influences of the substituents on the inhibition constant were investigated by linear free-energy relationships, and significant correlations between this constant and electronic parameters could be calculated. The influence of pH on the reaction is complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号