首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jack PJ  Boyle DB  Eaton BT  Wang LF 《Journal of virology》2005,79(16):10690-10700
J virus (J-V) was isolated from feral mice (Mus musculus) trapped in Queensland, Australia, during the early 1970s. Although studies undertaken at the time revealed that J-V was a new paramyxovirus, it remained unclassified beyond the family level. The complete genome sequence of J-V has now been determined, revealing a genome structure unique within the family Paramyxoviridae. At 18,954 nucleotides (nt), the J-V genome is the largest paramyxovirus genome sequenced to date, containing eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. The two genes located between the fusion (F) and attachment (G) protein genes, which have been named the small hydrophobic (SH) protein gene and the transmembrane (TM) protein gene, encode putative proteins of 69 and 258 amino acids, respectively. The 4,401-nt J-V G gene, much larger than other paramyxovirus attachment protein genes sequenced to date, encodes a putative attachment protein of 709 amino acids and distally contains a second open reading frame (ORF) of 2,115 nt, referred to as ORF-X. Taken together, these novel features represent the most significant divergence to date from the common six-gene genome structure of Paramyxovirinae. Although genome analysis has confirmed that J-V can be classified as a member of the subfamily Paramyxovirinae, it cannot be assigned to any of the five existing genera within this subfamily. Interestingly, a recently isolated paramyxovirus appears to be closely related to J-V, and preliminary phylogenetic analyses based on putative matrix protein sequences indicate that these two viruses will likely represent a new genus within the subfamily Paramyxovirinae.  相似文献   

2.
Woo PC  Lau SK  Wong BH  Wong AY  Poon RW  Yuen KY 《Journal of virology》2011,85(24):13473-13474
We discovered a novel paramyxovirus, Tailam virus, of subfamily Paramyxovirinae, in the kidneys and spleens of Sikkim rats. The coding potential of its genome (3'-N-P/V/C-M-F-SH-TM-G-L-5') is similar to those of Beilong virus and J virus, with putative proteins having 59.1 to 94.4% and 23.8 to 80.1% amino acid identities to those of Beilong virus and J virus, respectively.  相似文献   

3.
A paramyxovirus has been isolated from Atlantic salmon Salmo salar suffering from epitheliocystis. This virus does not cause any mortality when used to challenge disease-free salmon, but has been associated with 2 cases of mortality in salmon farms in Norway. Atlantic salmon paramyxovirus (ASPV) has been suggested as a name for the virus. The ASP virus is a slow-growing virus in cell cultures (rainbow trout gill cells: RTgill-W1). Little is known about its importance and its phylogenetic position is uncertain. Hence, the need for a fast and sensitive diagnostic method for studying the prevalence of this virus in salmon farms and for more basic knowledge about its identity were the motivation for this study. A partial nucleotide sequence (816 bp) from the large protein (L protein) gene of the ASP virus has been sequenced from 2 different isolates. The putative amino acid sequence has been compared with the L protein of other paramyxoviruses. This sequence gives strong support to a relationship between the ASP virus and members of the subfamily Paramyxovirinae, genus Respirovirus.  相似文献   

4.
Phylogenetic relationships among the Paramyxoviridae, a broad family of viruses whose members cause devastating diseases of wildlife, livestock, and humans, were examined with both fusion (F) and matrix (M) protein-coding sequences. Neighbor-joining trees of F and M protein sequences showed that the Paramyxoviridae was divided into the two traditionally recognized subfamilies, the Paramyxovirinae and the Pneumovirinae. Within the Paramyxovirinae, the results also showed groups corresponding to three currently recognized genera: Respirovirus, Morbillivirus, and Rubulavirus. The relationships among the three genera of the Paramyxovirinae were resolved with M protein sequences and there was significant bootstrap support (100%) showing that members of the genus Respirovirus and the genus Morbillivirus were more closely related to each other than to members of the genus Rubulavirus. Both F and M phylogenies showed that Newcastle disease virus (NDV) was more closely related to the genus Rubulavirus than to the other two genera but were consistent with the proposal (B. S. Seal et al., 2000, Virus Res. 66, 1-11) that NDV be classified as a separate genus within the Paramyxovirinae. Both F and M phylogenies were also consistent with the proposal (L. Wang et al., 2000, J. Virol 74, 9972-9979) that Hendra virus be classified as a new genus closely related and basal to the genus Morbillivirus. Rinderpest was most closely related to measles and a more derived virus than to canine distemper virus, phocine distemper virus, or dolphin morbillivirus.  相似文献   

5.
为了进一步明确副粘病毒Tianjin株的来源和种系进化地位,探讨其高致病性的机制.对Tianjin株NP、P、M及L蛋白进行了生物信息学分析.进化树显示:Tianjin株属于副粘病毒亚科呼吸道病毒属,且很可能为仙台病毒新的基因型.相似性比较表明,P蛋白变异最大.相似性仅为78.7%~91.9%;L蛋白相似性最高,为96.0%~98.0%.序列比对显示:NP蛋白氨基酸序列中存在15个独特的变异位点,P蛋白存在29个,M蛋白存在6个,L蛋白存在29个.这些独特变异位点的存在很可能是导致Tianjin株在宿主来源和致病特点等方面与已知仙台病毒株具有较大差异的原因.  相似文献   

6.
Karlin D  Belshaw R 《PloS one》2012,7(3):e31719
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.  相似文献   

7.
8.
A new role of the Paramyxovirus accessory proteins has been uncovered. The P gene of the subfamily Paramyxovirinae encodes accessory proteins including the V and/or C protein by means of pseudotemplated nucleotide addition (RNA editing) or by overlapping open reading frame. The Respirovirus (Sendai virus and human parainfluenza virus (hPIV)3) and Rubulavirus (simian virus (SV)5, SV41, mumps virus and hPIV2) circumvent the interferon (IFN) response by inhibiting IFN signaling. The responsible genes were mapped to the C gene for SeV and the V gene for rubulaviruses. On the other hand, wild type measles viruses isolated from clinical specimens suppress production of IFN, although responsible viral factors remain to be identified. Both human and bovine respiratory syncytial viruses (RSVs) counteract the antiviral effect of IFN with inhibiting neither IFN signaling nor IFN production. Bovine RSV NS1 and NS2 proteins cooperatively antagonize the antiviral effect of IFN. Studies on the molecular mechanism by which viruses circumvent the host IFN response will not only illustrate co-evolution of virus strategies of immune evasion but also provide basic information useful for engineering novel antiviral drugs as well as recombinant live vaccine.  相似文献   

9.
The amino acid sequences of the NP,P, M, F,HN and L proteins of the paramyxovirus Tianjin strain were analyzed by using the bioinformatics methods. Phylogenetic analysis based on 6 structural proteins among the Tianjin strain and 25 paramyxoviruses showed that the Tianjin strain belonged to the genus Respirovirus, in the subfamily Paramyxovirinae, and was most closely related to Sendal virus (SeV). Phylogenetic analysis with 14 known SeVs showed that Tianjin strain represented a new evolutionary lineage. Similarities comparisons indicated that Tianjin strain P protein was poorly conserved, sharing only 78.7%-91.9% amino acid identity with the known SeVs, while the L protein was the most conserved, having 96.0%-98.0% amino acid identity with the known SeVs. Alignments of amino acid sequences of 6 structural proteins clearly showed that Tianjin strain possessed many unique amino acid substitutions in their protein sequences, 15 in NP, 29 in P, 6 in M, 13 in F, 18 in HN, and 29 in L. These results revealed that Tianjin strain was most likely a new genotype of SeV. The presence of unique amino acid substitutions suggests that Tianjin strain maybe has a significant difference in biological, pathological, immunological, or epidemiological characteristics from the known SeVs.  相似文献   

10.
Highly virulent Newcastle disease virus (NDV) isolates are List A pathogens for commercial poultry, and reports of their isolation among member nations must be made to the Office of International Epizootes (OIE). The virus is classified as a member of the order Mononegavirales in the family Paramyxoviridae of the subfamily Paramyxovirinae. Two interactive surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, play essential roles in NDV attachment and fusion of cells during infection. Antibodies to the F or HN proteins are capable of virus neutralization; however, no full-length sequences are available for these genes from recently obtained virulent isolates. Therefore, nucleotide and predicted amino acid sequences of the F and HN protein genes from 16 NDV isolates representing highly virulent viruses from worldwide sources were obtained for comparison to older virulent isolates and vaccine strains. The F protein amino acid sequence was relatively conserved among isolates maintaining potential glycosylation sites and C residues for disulfide bonds. A dibasic amino acid motif was present at the cleavage site among more virulent isolates, while the low virulence viruses did not have this sequence. However, a Eurasian collared dove virus had a K114Q substitution at the F cleavage site unique among NDV isolates. The HN protein among NDV isolates maintained predicted catalytic and active site residues necessary for neuraminidase activity and hemagglutination. Length of the HN for the Eurasian collared dove isolate and a previously reported heat resistant virulent isolate were longer relative to other more recent virulent isolates. Phylogenetically NDV isolates separated into four groups with more recent virulent isolates forming a diverse branch, while all the avian paramyxoviruses formed their own clade distinct from other members of the Paramyxoviridae.  相似文献   

11.
Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.  相似文献   

12.
Members of the Paramyxovirinae subfamily of the Paramyxoviridae family of viruses have the unusual requirement that the nucleotide length of the viral genome must be an even multiple of six in order for efficient RNA replication, and hence virus replication, to occur. Human parainfluenza virus type 2 (HPIV2) is the only member of the genus that has been reported to have a genome length that is not an even multiple of six, and it has also been recovered from a full-length antigenomic-sense cDNA that did not conform to the "rule of six." To reexamine the issue of nucleotide length in natural isolates of HPIV2, a complete consensus genomic sequence was determined for three HPIV2 strains: Greer, Vanderbilt/1994 (V94), and Vanderbilt/1998. Each of these strains was found to have a genome length of 15,654 nucleotides (nt), thus conforming in each case to the rule of six. To directly examine the requirement that the genomic length of HPIV2 be an even multiple of six, we constructed six full-length antigenomic HPIV2/V94 cDNAs that deviated from a polyhexameric length by 0 to 5 nt. Recombinant HPIV2s were readily recovered from all of the cDNAs, including those that did not conform to the rule of six. One recombinant HPIV2 isolate was completely sequenced for each of the nonpolyhexameric antigenomic cDNAs. These were found to contain small nucleotide insertions or deletions that conferred polyhexameric length to the recovered genome. Interestingly, almost all of the length corrections occurred within the hemagglutinin-neuraminidase and large polymerase genes or the intervening intergenic region and thus were proximal to the insert that caused the deviation from the rule of six. These results demonstrate, in the context of complete infectious virus, that HPIV2 has a strong and seemingly absolute requirement for a polyhexameric genome.  相似文献   

13.
Three members have been isolated of an additional glutelin gene subfamily, named subfamily B, consisting of about five members per haploid rice genome. Restriction fragment length polymorphism analysis showed major differences between Japonica and Indica lines, indicating the divergence of the subfamily since the split between the two varieties. While corresponding exons of the subfamily B showed 80 to 88% nucleotide sequence homology, those exons were only 60–65% homologous to those of the glutelin A subfamily [15, 19, 24], distinguishing them from the subfamily A. Intron position and derived polypeptide structure, in addition to the nucleotide sequence, confirm the subfamily B members as glutelins. Analysis of RNA from seeds of different stages of development showed that the subfamily B members were expressed at the same time as those of subfamily A, demonstrating coordinated regulation of the two subfamilies.  相似文献   

14.
为探讨瑞香科沉香亚科的分类学地位,结合其他亚科植物的化学成分类型,对从沉香属植物分离到的各类化学成分进行了综述。从二萜和黄酮(烷)的成分类型判断,沉香亚科的进化地位低于瑞香亚科;从三萜成分类型来看,其地位又比Gonystyloideae亚科稍高;同时2-(2-苯乙基)色酮类和二苯基甲酮类成分为沉香属甚至沉香亚科的特征性成分。因此,沉香亚科是瑞香科中进化程度相对较低的类群,处于瑞香亚科和Gonystyloideae亚科之间。  相似文献   

15.
以雅罗鱼亚科为外群,采用分支系统学的原理和方法对鲌亚科17个属(须鳊属除外)进行了系统发育和动物地理学的分析.结果表明,(1)鲌亚科这17个属为一个单系群,并由4个较小的单系群组成;(2)鲌亚科现在的地理分布格局除源自离散事件外,主要源于扩散事件.鲌亚科的特征演化还表明,东亚地区地质历史的反转演化和平行演化可能在鲌亚科系统发育过程中起了重要的作用.  相似文献   

16.
Structural features of paramyxovirus F protein required for fusion initiation   总被引:10,自引:0,他引:10  
On the basis of the coordinates of the related Newcastle disease virus (NDV) F protein, Valine-94, a determinant of measles virus (MV) cytopathicity, is predicted to lie in a cylindrical cavity with 10 A diameter located at the F neck. A 16-residue domain around V94 is functionally interchangeable between NDV and MV F, supporting our homology model. Features of the cavity are conserved within the Paramyxovirinae. A hydrophobic base and a hydrophilic residue at the rim are required for surface expression. Small residue substitutions predicted to open the cavity were found to disrupt transport or limit fusogenicity of transport-competent mutants but can be compensated for by simultaneous insertion of larger residues at the opposing wall. Variants containing histidine substitutions mediate fusion at pH 8.5, while at pH 7.2 fusion is blocked, suggesting that functionality requires low charge in the cavity. These results indicate that specific structural features of the cavity are essential for paramyxovirus fusion initiation.  相似文献   

17.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

18.
19.
AP2功能基因在植物花发育中的重要作用   总被引:3,自引:0,他引:3  
AP2基因作为调控植物花发育的功能基因,参与花分生特性建立、花器官的特性特化以及形成调控。所编码的AP2/EREBP转录因子的主要特征是都至少含有一个由60到70个左右的氨基酸组成高度保守的DNA结合区,称作AP2结合域。按其所含的AP2结构域的数目分为3个亚族,即AP2亚家族、EREBP亚家族和RAV亚家族,每个亚家族都有各自的作用。AP2基因不但自身调控着花、胚珠的发育,而且与其他因子相互协作,参与到复杂的花发育调控网络。将对AP2基因的特征和分类及其在花发育中的作用进行概述。  相似文献   

20.
Hughes AL 《Immunogenetics》2012,64(7):549-558
The βGRP/GNBP/β-1,3-glucanase protein family of insects includes several proteins involved in innate immune recognition, such as the β-glucan recognition proteins of Lepidoptera and the Gram-negative bacteria-binding proteins of Drosophila. A phylogenetic analysis supported the existence of two distinct subfamilies, designated the pattern recognition receptor (PRR) and glucanase subfamilies, which originated by gene duplication prior to the origin of the Holometabola. In the C-terminal region (CTR) shared by both subfamilies, the PRR subfamily has evolved significantly more rapidly at the amino acid sequence level than has the glucanase subfamily, implying a relative lack of constraint on the amino acid sequence of this region in the PRR subfamily. PRR subfamily members also include an N-terminal region (NTR), involved in carbohydrate recognition, which is not shared by glucanase subfamily members. In comparisons between paralogous PRR subfamily members, there were no conserved amino acid residues in the NTR. However, when pairs of putatively orthologous PRR subfamily members were compared, the NTR was most often as conserved as the CTR or more so. This pattern suggests that the NTR may be important in functions specific to the different paralogs, while amino acid sequence changes in the NTR may have been important in functional differentiation among paralogs, specifically with regard to the types of carbohydrates that they recognize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号