首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
5-Lipoxygenase upregulation by dexamethasone in human mast cells   总被引:1,自引:0,他引:1  
In spite of intensive research, our understanding of the regulation of expression of 5-LO (the key enzyme in the leukotriene metabolism) remains fragmentary. We investigated the effects of dexamethasone on the expression of this gene in a binary model consisting of two clones of the human mast cell line HMC-1, one with a 5-LO-negative and the other with a 5-LO-positive phenotype, respectively. When dexamethasone was included in the culture medium at a physiologically relevant concentration, biosynthesis of 5-LO derivatives increased considerably not only in the 5-LO-negative HMC-1 cells (approx 10-fold) but also in the 5-LO-positive cells, characterized by an already substantial enzyme activity. Consistently, Northern blot analysis revealed that a dramatic increase in the abundance of 5-LO mRNA occurred when the cells were exposed to dexamethasone. Likewise, a significant increase in the immunoreactive 5-LO protein was detected by Western blotting. In contrast, dexamethasone seemed to have no effect on the expression of two other genes of pivotal importance in leukotriene biosynthesis, viz. FLAP and LTC(4) synthase. We conclude that in human mast cells glucocorticoids effectively and selectively upregulate the expression of 5-LO.  相似文献   

3.
The products of arachidonic acid metabolism in the 15,000xg supernatant of sonicated rat PMN are described. Only products derived from 5-lipoxygenase are observed. These products are 5-HETE and products derived from hydrolysis of LTA4, particularly LTB4. Some minor products derived from decomposition of 5-HPETE are also observed. The dependence of the activity of 5-lipoxygenase on enzyme and on substrate concentrations is presented and discussed in terms of a kinetic model that includes enzyme inactivation during turnover and substrate inhibition. The 5-lipoxygenase activity is stimulated by Ca++ and ATP.  相似文献   

4.
The linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase was found to be efficiently inhibited by stable nitroxyl radicals: 1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl bicyclo[2,2,2]octane-1-carboxylate, 1-adamantylacetate, dodecanoate, and octadecanoate. The dependence of apparent IC50 values on the rotational correlation times of 4-hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidine and its derivatives in model micellar systems was analyzed. An inhibition mechanism was proposed; it involves the interaction of a hydrophobic nitroxyl radical with the intermediate radical enzyme–substrate complex.  相似文献   

5.
5-Lipoxygenase interacts with coactosin-like protein   总被引:4,自引:0,他引:4  
We have recently identified coactosin-like protein (CLP) in a yeast two-hybrid screen using 5-lipoxygenase (5LO) as a bait. In this report, we demonstrate a direct interaction between 5LO and CLP. 5LO associated with CLP, which was expressed as a glutathione S-transferase fusion protein, in a dose-dependent manner. Coimmunoprecipitation experiments using epitope-tagged 5LO and CLP proteins transiently expressed in human embryonic kidney 293 cells revealed the presence of CLP in 5LO immunoprecipitates. In reciprocal experiments, 5LO was detected in CLP immunoprecipitates. Non-denaturing polyacrylamide gel electrophoresis and cross-linking experiments showed that 5LO binds CLP in a 1:1 molar stoichiometry in a Ca(2+)-independent manner. Site-directed mutagenesis suggested an important role for lysine 131 of CLP in mediating 5LO binding. In view of the ability of CLP to bind 5LO and filamentous actin (F-actin), we determined whether CLP could physically link 5LO to actin filaments. However, no F-actin-CLP.5LO ternary complex was observed. In contrast, 5LO appeared to compete with F-actin for the binding of CLP. Moreover, 5LO was found to interfere with actin polymerization. Our results indicate that the 5LO-CLP and CLP-F-actin interactions are mutually exclusive and suggest a modulatory role for 5LO in actin dynamics.  相似文献   

6.
目的建立5-脂氧化酶(5-LO)转基因小鼠进行动脉粥样硬化的发病分子机制的研究。方法通过显微注射的方法,将5-脂氧化酶基因片段(6.8 kb)导入BDF1受精卵雄原核并移植到同期受孕的假孕母鼠输卵管中,对产出仔鼠的鼠尾组织DNA进行PCR、Southern blot检测,对9、20、24号转基因小鼠分别提取腹腔细胞、骨髓细胞及脾、肾组织总RNA和蛋白,并采用RT-PCR、Western blot方法进行转录水平检测和蛋白表达检测。结果共产生25只子代小鼠,经PCR和Southern检测获得7只阳性小鼠,经RT-PCR和Western blot检测结果表明,9、20、24号转基因小鼠腹腔细胞、骨髓细胞、脾、肾5-LO和5-脂氧化酶激活蛋白(FLAP)在RNA和蛋白水平表达均高于正常BDF1对照小鼠,且统计学分析腹腔细胞、骨髓细胞表达均具有显著差异(P0.05)。结论成功建立5-LO转基因小鼠模型。  相似文献   

7.
8.
Methanogenic inhibition by arsenic compounds   总被引:2,自引:0,他引:2  
The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.  相似文献   

9.
Enzyme inhibition by fluoro compounds   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
Glycosidase inhibition by cyclic sulfonium compounds   总被引:1,自引:0,他引:1  
Inhibitory activities of various cyclic sulfonium compounds including salacinol against several glycosidases were studied and some compounds showed significant inhibition. The sulfonium ion structure was found to be essential for the inhibitory activity. Specific inhibition of salacinol toward rice alpha-glucosidase was ascribed to the tether arm.  相似文献   

12.
Abstract

A quantitative structure-activity relationship (QSAR) study has been made on some lipoxygenase inhibitors belonging to the series of ω-phenylalkyl hydroxamic acids, ω-naphthylalkyl hydroxamic acids, eicosatetraenoic acids, and 1H.benzimidazole-4-ols. It was found that the hydrophobic character of the molecules and the size of their substituents selectively govern their lipoxygenase inhibitory activity. The enzyme active site possesses a non-heme ferric ion, a hydrophobic domain, and a carboxylic acid binding site. It was found that while the functional group of inhibitors must interact with the ferric ion, the substituent on one side of it would be involved in hydrophobic interaction and that on the other side in van der Waals interaction with the enzyme so leading to an enhancement in the inhibitory activity of the inhibitors.  相似文献   

13.
5-Lipoxygenase: regulation of expression and enzyme activity   总被引:8,自引:0,他引:8  
5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes, a group of pro-inflammatory lipid mediators derived from arachidonic acid. Leukotriene antagonists are used in the treatment of asthma, and the potential role of leukotrienes in atherosclerosis, another chronic inflammatory disease, has recently received considerable attention. In addition, some possible effects of 5-LO metabolites in tumorigenesis have emerged. Thus, knowledge of the biochemistry of this enzyme has potential implications for the treatment of various diseases. Recent advances have expanded our understanding of the regulatory mechanisms underlying the expression and control of 5-LO activity. With regard to the control of enzyme activity, many of these findings focus on the N-terminal domain of 5-LO.  相似文献   

14.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is activated by protein kinase A and calcium/calmodulin-dependent protein kinase. One important aspect of the regulation of any enzyme by a phosphorylation-dephosphorylation cascade, and one that is lacking for tryptophan hydroxylase, lies in the identification of its site of phosphorylation by protein kinases. Recombinant forms of brain tryptophan hydroxylase were expressed as glutathione S -transferase fusion proteins and exposed to protein kinase A. This protein kinase phosphorylates and activates full-length tryptophan hydroxylase. The inactive regulatory domain of the enzyme (corresponding to amino acids 1–98) was also phosphorylated by protein kinase A. The catalytic core of the hydroxylase (amino acids 99–444), which expresses high levels of enzyme activity, was neither phosphorylated nor activated by protein kinase A. Conversion of serine-58 to arginine resulted in the expression of a full-length tryptophan hydroxylase mutant that, although remaining catalytically active, was neither phosphorylated nor activated by protein kinase A. These results indicate that the activation of tryptophan hydroxylase by protein kinase A is mediated by the phosphorylation of serine-58 within the regulatory domain of the enzyme.  相似文献   

15.
16.
We examined whether metabolites of arachidonic acid (AA) regulate K+ efflux during regulatory volume decrease (RVD) by mudpuppy red blood cells (RBCs). Volume regulation was inhibited by the phospholipase A2 antagonists mepacrine (10 μm) and ONO-RS-082 (10 μm); the inhibitory effect of ONO-RS-082 was reversed by gramicidin (5 μm). Eicosatetraynoic acid (ETYA, 100 μm), a general antagonist of AA metabolism, also blocked RVD. In addition, volume regulation was inhibited by the lipoxygenase pathway antagonist nordihydroguaiaretic acid (NDGA, 10 μm), the 5 lipoxygenase antagonists AA-861 (5 μm) and curcumin (20 μm), and by the 5-lipoxygenase activating protein inhibitor L-655,298 (5 μm). Inhibition by all four of these agents was reversed with gramicidin. In contrast, the 12- and 15-lipoxygenase pathway inhibitor ethyl-3,4-dihydroxy-benzylidene-cyanoacetate (EDBCA, 1 μm) and the cytochrome P-450 monooxygenase pathway blocker ketoconazole (20 μm) had no effect. On the other hand, the cyclooxygenase pathway inhibitor aspirin (100 μm) slightly enhanced RVD. Consistent with these findings, a K+-selective whole cell conductance responsible for K+ efflux during cell swelling was inhibited by ONO-RS-082 (10 μm), NDGA (10 μm), AA-861 (5 μm), curcumin (20 μm), and l-655,298 (5 μm). In contrast, EDBCA (1 μm), ketoconazole (20 μm), and indomethacin (10 μm) did not block this whole cell conductance. These results indicate that a channel mediating K+ loss during RVD is regulated by a 5-lipoxygenase metabolite of arachidonic acid. Received: 12 December 1996/Revised: 28 February 1997  相似文献   

17.
TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein''s expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the product of 5-lipoxygenase, or 5-HPETE''s downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of the TRPM7 channel capable of attenuating TRPM7''s function during cell stress, making them effective tools for the biophysical characterization and suppression of TRPM7 channel conductance in vivo.  相似文献   

18.
When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.  相似文献   

19.
Three of four natural compounds, which are caffeic acid, eupatilin and 4'-demethyleupatilin, isolated from Chinese plant, Artemisia rubripes Nakai selectively inhibited 5-lipoxygenase of cultured mastocytoma cells. Half-inhibition doses (ID50) for caffeic acid, eupatilin and 4'-demethyleupatilin were 3.7, 14 and 18 X 10(-6) M, respectively. The inhibition by caffeic acid was non-competitive types. Prostaglandin synthase activities were little inhibited by eupatilin and 4'-demethyleupatilin, but rather stimulated by caffeic acid. The formation of leukotriene C4 and D4 by mast tumor cells was almost completely suppressed by these compounds at 10(-4) M.  相似文献   

20.
The proinflammatory enzyme 5-lipoxygenase (5-LOX) is upregulated in Alzheimer''s disease (AD), but its localization and association with the hallmark lesions of the disease, β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs), is unknown. This study examined the distribution and cellular localization of 5-LOX in the medial temporal lobe from AD and control subjects. The spatial relationship between 5-LOX immunoreactive structures and AD lesions was also examined. We report that, in AD subjects, 5-LOX immunoreactivity is elevated relative to controls, and its localization is dependent on the antibody-targeted portion of the 5-LOX amino acid sequence. Carboxy terminus–directed antibodies detected 5-LOX in glial cells and neurons, but less frequently in neurons with dystrophic (NFT) morphology. In contrast, immunoreactivity observed using 5-LOX amino terminus–directed antibodies was virtually absent in neurons and abundant in NFTs, neuritic plaques, and glia. Double-labeling studies showed a close association of 5-LOX–immunoreactive processes and glial cells with Aβ immunoreactive plaques and vasculature and also detected 5-LOX in tau immunoreactive and amyloid containing NFTs. Different immunolabeling patterns with antibodies against carboxy vs amino terminus of 5-LOX may be caused by post-translational modifications of 5-LOX protein in Aβ plaques and NFTs. The relationship between elevated intracellular 5-LOX and hallmark AD pathological lesions provides further evidence that neuroinflammatory pathways contribute to the pathogenesis of AD. (J Histochem Cytochem 56:1065–1073, 2008)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号